Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Biomimetic Synthesis of Hyperjapones F-I

Hiu C. Lam A , Quang D. Phan A , Christopher J. Sumby A and Jonathan H. George A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.

B Corresponding author. Email: jonathan.george@adelaide.edu.au

Australian Journal of Chemistry 71(9) 649-654 https://doi.org/10.1071/CH18141
Submitted: 7 April 2018  Accepted: 3 May 2018   Published: 6 July 2018

Abstract

Hyperjapones F–I are tetracyclic meroterpenoids recently isolated from Hypericum japonicum. All four of these natural products have been synthesised using oxidative, intermolecular hetero-Diels–Alder reactions to couple their common biosynthetic precursor, norflavesone, to the appropriate monoterpene building blocks: sabinene, β-pinene, and α-pinene. The synthesis of enantiomerically pure hyperjapones H and I and comparison of their optical rotations to those of the natural samples indicated that these meroterpenoids are probably biosynthesised as either racemic or scalemic mixtures.


References

[1]  (a) For reviews of the synthesis of PPAP natural products, see: R. Ciochina, R. B. Grossman, Chem. Rev. 2006, 106, 3963.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. T. Njardarson, Tetrahedron 2011, 67, 7631.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J.-A. Richard, R. H. Pouwer, D. Y.-K. Chen, Angew. Chem. Int. Ed. 2012, 51, 4536.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) For some biomimetic syntheses of PPAP natural products by our group, see: J. H. George, M. D. Hesse, J. E. Baldwin, R. M. Adlington, Org. Lett. 2010, 12, 3532.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H. P. Pepper, H. C. Lam, W. M. Bloch, J. H. George, Org. Lett. 2012, 14, 5162.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) H. P. Pepper, S. J. Tulip, Y. Nakano, J. H. George, J. Org. Chem. 2014, 79, 2564.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) H. C. Lam, K. K. W. Kuan, J. H. George, Org. Biomol. Chem. 2014, 12, 2519.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  X.-W. Yang, Y.-P. Li, J. Su, W.-G. Ma, G. Xu, Org. Lett. 2016, 18, 1876.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  D. P. Killeen, L. Larsen, F. E. Dayan, K. C. Gordon, N. B. Perry, J. W. van Klink, J. Nat. Prod. 2016, 79, 564.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) For examples of intermolecular hetero-Diels–Alder reactions involving humulene, see: R. M. Adlington, J. E. Baldwin, G. J. Pritchard, A. J. Williams, D. J. Watkin, Org. Lett. 1999, 1, 1937.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Rodriguez, J. E. Moses, R. M. Adlington, J. E. Baldwin, Org. Biomol. Chem. 2005, 3, 3488.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Gao, G.-Q. Wang, K. Wei, P. Hai, F. Wang, J.-K. Liu, Org. Lett. 2012, 14, 5936.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) For examples of intermolecular hetero-Diels–Alder reactions involving β-caryophyllene, see: A. L. Lawrence, R. M. Adlington, J. E. Baldwin, V. Lee, J. A. Kershaw, A. L. Thompson, Org. Lett. 2010, 12, 1676.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. T. J. Spence, J. H. George, Org. Lett. 2011, 13, 5318.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Takao, S. Noguchi, S. Sakamoto, M. Kimura, K. Yoshida, K. Tadano, J. Am. Chem. Soc. 2015, 137, 15971.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. G. Newton, D. N. Tran, M. D. Wodrich, N. Cramer, Angew. Chem. Int. Ed. 2017, 56, 13776.

[6]  L. Hu, Y. Zhang, H. Zhu, J. Liu, H. Li, X.-N. Li, W. Sun, J. Zeng, Y. Xue, Y. Zhang, Org. Lett. 2016, 18, 2272.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  H. C. Lam, J. T. J. Spence, J. H. George, Angew. Chem. Int. Ed. 2016, 55, 10368.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Y.-P. Li, X.-W. Yang, F. Xia, H. Yan, W.-G. Ma, G. Xu, Tetrahedron Lett. 2016, 57, 5868.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) For reviews of o-quinone methide chemistry, see: R. W. Van De Water, T. R. R. Pettus, Tetrahedron 2002, 58, 5367.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) T. P. Pathak, M. S. Sigman, J. Org. Chem. 2011, 76, 9210.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. J. Willis, C. D. Bray, Chem. – Eur. J. 2012, 18, 9160.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W.-J. Bai, J. G. David, Z.-G. Feng, M. G. Weaver, K.-L. Wu, T. R. R. Pettus, Acc. Chem. Res. 2014, 47, 3655.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. V. Osipov, V. A. Osyanin, Y. N. Klimochkin, Russ. Chem. Rev. 2017, 86, 625.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) For some recent applications of o-quinone methide chemistry in biomimetic syntheses by our group, see: H. P. Pepper, K. K. W. Kuan, J. H. George, Org. Lett. 2012, 14, 1524.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. T. J. Spence, J. H. George, Org. Lett. 2013, 15, 3891.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) A. W. Markwell-Heys, K. K. W. Kuan, J. H. George, Org. Lett. 2015, 17, 4228.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) J. T. J. Spence, J. H. George, Org. Lett. 2015, 17, 5970.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) A. J. Day, H. C. Lam, C. J. Sumby, J. H. George, Org. Lett. 2017, 19, 2463.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) L. Wei, M. Xiao, Z. Xie, Org. Lett. 2014, 16, 2784.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. Song, H. Yao, R. Tong, Org. Lett. 2014, 16, 3740.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Zhao, X. Ren, J. Ren, H. Lu, S. Ma, R. Gao, Y. Li, S. Xu, L. Li, S. Yu, Org. Lett. 2015, 17, 3118.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) S. B. Bharate, I. P. Singh, Tetrahedron Lett. 2006, 47, 7021.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. B. Bharate, K. K. Bhutani, S. I. Khan, B. L. Tekwani, M. R. Jacob, I. A. Khan, I. P. Singh, Bioorg. Med. Chem. 2006, 14, 1750.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. B. Bharate, S. I. Khan, B. L. Tekwani, M. Jacob, I. A. Khan, I. P. Singh, Bioorg. Med. Chem. 2008, 16, 1328.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. E. Allen, C. Zhu, J. Panek, S. E. Schaus, Org. Lett. 2017, 19, 1878.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  L. Crombie, R. C. F. Jones, C. Palmer, J. Chem. Soc., Perkin Trans. 1 1987, 317.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  For a similar trimethylation of an acylphloroglucinol, see: N. T. Nguyen, V. C. Pham, M. Litaudon, F. Guéritte, B. Bodo, V. T. Nguyen, V. H. Nguyen, Tetrahedron 2009, 65, 7171.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  For a previous use of Ag2O in the generation of o-quinone methides, see: D. Liao, H. Li, X. Lei, Org. Lett. 2012, 14, 18.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) C. M. Williams, L. N. Mander, Tetrahedron 2001, 57, 425.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. N. Mander, C. M. Williams, Tetrahedron 2016, 72, 1133.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.

[18]  L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar |