Atom Transfer Radical Polymerization Functionalization on Polypropylene Films for Immobilizing Active Compounds
Cintia B. Contreras A , Ricardo Toselli B and Miriam C. Strumia A CA Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Laboratorio de Materiales Poliméricos (LAMAP), IPQA-CONICET, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad universitaria (X5000HUA), Córdoba, Argentina.
B Universidad Nacional de Córdoba, Centro de química aplicada (CEQUIMAP), Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad universitaria (X5000HUA), Córdoba, Argentina.
C Corresponding author. Email: mcs@fcq.unc.edu.ar
Australian Journal of Chemistry 71(7) 534-542 https://doi.org/10.1071/CH18140
Submitted: 4 April 2018 Accepted: 15 June 2018 Published: 18 July 2018
Abstract
This work proposes the surface chemical modification of polypropylene films (PP) by atom transfer radical polymerization (ATRP) using glycidyl methacrylate (GMA) as the graft monomer. At a later stage, the epoxy groups of PP-g-PGMA were used for covalent binding of glucose oxidase (GOD) to obtain an active material (PP-g-PGMA-GOD) with 9.38 ± 0.06 mg cm−2 of enzyme bonded on the surface of PP. Preliminary microbiological studies have shown that this methodology of covalent binding of the enzyme onto the PP surface allowed its activity to be maintained. Therefore, this advantage would give to PP-g-PGMA-GOD films a potential use as an active packaging material if further specific studies on their antimicrobial properties can be verified.
References
[1] D. Roy, J. W. Park, J. Mater. Chem. B 2015, 3, 5135.| Crossref | GoogleScholarGoogle Scholar |
[2] B. J. Vartiainen, M. Rättö, S. Paulussen, Packag. Technol. Sci. 2005, 18, 243.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. K. Thakur, A. K. Rana, A. S. Singha, V. Thakur, in Surface Modification of Biopolymers (Eds V. K. Thakur, A. S. Singha) 2015, pp. 1–19 (John Wiley: Singapore).
[4] J. Huang, H. Murata, R. R. Koepsel, A. J. Russell, K. Matyjaszewski, Biomacromolecules 2007, 8, 1396.
| Crossref | GoogleScholarGoogle Scholar |
[5] K. Matyjaszewski, Macromolecules 2012, 45, 4015.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. Matyjaszewski, in Controlled Radical Polymerization: Mechanisms (Eds K. Matyjaszewski, B. S. Sumerlin, N. V. Tsarevsky, J. Chiefari) 2015, pp. 1–17 (American Chemical Society: Washington, DC).
[7] J. W. Lee, S. M. Son, S. I. Hong, J. Food Eng. 2008, 86, 484.
| Crossref | GoogleScholarGoogle Scholar |
[8] C. Corradini, I. Alfieri, A. Cavazza, C. Lantano, A. Lorenzi, N. Zucchetto, A. Montenero, J. Food Eng. 2013, 119, 580.
| Crossref | GoogleScholarGoogle Scholar |
[9] J. A. Cavallo, M. C. Strumia, C. G. Gomez, J. Food Eng. 2014, 136, 48.
| Crossref | GoogleScholarGoogle Scholar |
[10] V. Muriel-Galet, M. J. Cran, S. W. Bigger, P. Hernández-Muñoz, R. Gavara, J. Food Eng. 2015, 149, 9.
| Crossref | GoogleScholarGoogle Scholar |
[11] C. Mellinas, A. Valdés, M. Ramos, N. Burgos, M. del C. Garrigós, A. Jimenez, J. Appl. Polym. Sci. 2016, 133, 42631.
[12] C. B. Contreras, G. Charles, R. Toselli, M. C. Strumia, in Biopackaging (Ed. M. E. Masuelli) 2017, pp. 36–58 (CRC Press: Boca Raton, FL).
[13] D. Dainelli, N. Gontard, D. Spyropoulos, E. Zondervan-van den Beuken, P. Tobback, Trends Food Sci. Technol. 2008, 19, S103.
| Crossref | GoogleScholarGoogle Scholar |
[14] C. Silvestre, D. Duraccio, S. Cimmino, Prog. Polym. Sci. 2011, 36, 1766.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. M. C. de Azeredo, Trends Food Sci. Technol. 2013, 30, 56.
| Crossref | GoogleScholarGoogle Scholar |
[16] S. D. F. Mihindukulasuriya, L.-T. Lim, Trends Food Sci. Technol. 2014, 40, 149.
| Crossref | GoogleScholarGoogle Scholar |
[17] L. Bastarrachea, D. Wong, M. Roman, Z. Lin, J. Goddard, Coatings 2015, 5, 771.
| Crossref | GoogleScholarGoogle Scholar |
[18] M. B. Vásconez, S. K. Flores, C. A. Campos, J. Alvarado, L. N. Gerschenson, Food Res. Int. 2009, 42, 762.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. Appendini, J. H. Hotchkiss, Innov. Food Sci. Emerg. Technol. 2002, 3, 113.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. M. Goddard, J. H. Hotchkiss, Prog. Polym. Sci. 2007, 32, 698.
| Crossref | GoogleScholarGoogle Scholar |
[21] D. Arrua, M. C. Strumia, M. A. Nazareno, J. Agric. Food Chem. 2010, 58, 9228.
| Crossref | GoogleScholarGoogle Scholar |
[22] F. Tian, E. a. Decker, D. J. McClements, J. M. Goddard, Food Chem. 2014, 151, 257.
| Crossref | GoogleScholarGoogle Scholar |
[23] V. Costamagna, D. Wunderlin, M. Larrañaga, I. Mondragon, M. Strumia, J. Appl. Polym. Sci. 2006, 102, 2254.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. F. Stragliotto, M. C. Strumia, C. G. Gomez, M. R. Romero, Ind. Eng. Chem. Res. 2018, 57, 1188.
| Crossref | GoogleScholarGoogle Scholar |
[25]
T. Sengupta, J. H. Han, Surface Chemistry of Food, Packaging, and Biopolymer Materials 2013 (Elsevier Ltd: Amsterdam).
[26] J. N. Talbert, J. M. Goddard, Colloids Surf. B Biointerfaces 2012, 93, 8.
| Crossref | GoogleScholarGoogle Scholar |
[27] Y. Zhang, D. Rochefort, Process Biochem. 2011, 46, 993.
| Crossref | GoogleScholarGoogle Scholar |
[28] L. Ge, Y. S. Zhao, T. Mo, J. R. Li, P. Li, Food Control 2012, 26, 188.
| Crossref | GoogleScholarGoogle Scholar |
[29] D. P. Speer, M. Chvapil, C. D. Eskelson, J. Ulreich, J. Biomed. Mater. Res. 1980, 14, 753.
| Crossref | GoogleScholarGoogle Scholar |
[30] A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, N. Roveri, J. Biomed. Mater. Res. 2001, 22, 3.
[31] J. F. Martucci, E. M. Accareddu, R. a. Ruseckaite, J. Mater. Sci. 2012, 47, 3282.
| Crossref | GoogleScholarGoogle Scholar |
[32] R. Ramanathan, D. E. Weibel, Appl. Surf. Sci. 2012, 258, 7950.
| Crossref | GoogleScholarGoogle Scholar |
[33] C. B. Contreras, G. Chagas, M. C. Strumia, D. E. Weibel, Appl. Surf. Sci. 2014, 307, 234.
| Crossref | GoogleScholarGoogle Scholar |
[34] F. J. Xu, K. G. Neoh, E. T. Kang, Prog. Polym. Sci. 2009, 34, 719.
| Crossref | GoogleScholarGoogle Scholar |
[35] H. Kawakita, H. Masunaga, K. Nomura, K. Uezu, I. Akiba, S. Tsuneda, J. Porous Mater. 2007, 14, 387.
| Crossref | GoogleScholarGoogle Scholar |
[36] J. Huang, X. Li, Y. Zheng, Y. Zhang, R. Zhao, X. Gao, H. Yan, Macromol. Biosci. 2008, 8, 508.
| Crossref | GoogleScholarGoogle Scholar |
[37] M. Y. Arıca, G. Bayramoǧlu, N. Biçak, Process Biochem. 2004, 39, 2007.
| Crossref | GoogleScholarGoogle Scholar |
[38] A. W. Eckert, D. Gröbe, U. Rothe, Biomaterials 2000, 21, 441.
| Crossref | GoogleScholarGoogle Scholar |
[39] S. Edmondson, W. T. S. Huck, J. Mater. Chem. 2004, 14, 730.
| Crossref | GoogleScholarGoogle Scholar |
[40] C. Sun, F. Zhou, L. Shi, B. Yu, P. Gao, J. Zhang, W. Liu, Appl. Surf. Sci. 2006, 253, 1729.
| Crossref | GoogleScholarGoogle Scholar |
[41] A. B. Sieval, R. Linke, H. Zuilhof, E. J. R. Sudhölter, Adv. Mater. 2000, 12, 1457.
| Crossref | GoogleScholarGoogle Scholar |
[42] R. L. Stears, T. Martinsky, M. Schena, Nat. Med. 2003, 9, 140.
| Crossref | GoogleScholarGoogle Scholar |
[43] S. Nishiyama, A. Goto, K. Saito, K. Sugita, M. Tamada, T. Sugo, T. Funami, Y. Goda, S. Fujimoto, Anal. Chem. 2002, 74, 4933.
| Crossref | GoogleScholarGoogle Scholar |
[44] V. Grano, N. Diano, S. Rossi, M. Portaccio, A. Attanasio, M. Cermola, R. Spiezie, C. Citton, D. G. Mita, Biotechnol. Prog. 2004, 20, 1393.
| Crossref | GoogleScholarGoogle Scholar |
[45] L. Cen, K. G. Neoh, E. T. Kang, Biosens. Bioelectron. 2003, 18, 363.
| Crossref | GoogleScholarGoogle Scholar |
[46] F. J. Xu, Q. J. Cai, Y. L. Li, E. T. Kang, K. G. Neoh, Biomacromolecules 2005, 6, 1012.
| Crossref | GoogleScholarGoogle Scholar |
[47] R. Wilson, P. F. Turner, Biosens. Bioelectron. 1992, 7, 165.
| Crossref | GoogleScholarGoogle Scholar |
[48] X. Liu, K. G. Neoh, L. Cen, E. T. Kang, Biosens. Bioelectron. 2004, 19, 823.
| Crossref | GoogleScholarGoogle Scholar |
[49] S. B. Bankar, M. V. Bule, R. S. Singhal, L. Ananthanarayan, Biotechnol. Adv. 2009, 27, 489.
| Crossref | GoogleScholarGoogle Scholar |
[50] J. M. Jay, M. J. Loessner, D. A. Golden, Modern Food Microbiology, 7th edn 2005 (Springer: New York, NY).