Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Novel Composite Li3V2(PO4)3Li2NaV2(PO4)3/C as Cathode Material for Li-Ion Batteries

Lingfang Li A B , Changling Fan B C and Jiaxing Yang A
+ Author Affiliations
- Author Affiliations

A College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, China.

B College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

C Corresponding author. Email: fancl@hnu.edu.cn

Australian Journal of Chemistry 71(7) 497-503 https://doi.org/10.1071/CH18122
Submitted: 28 March 2018  Accepted: 30 May 2018   Published: 21 June 2018

Abstract

A novel composite cathode for lithium ion batteries, Li3V2(PO4)3‖Li2NaV2(PO4)3/C, was synthesized by a sol-gel method. Cetyltrimethylammonium bromide (CTAB) was used as a surfactant while polyvinylidene difluoride (PVDF) was the carbon source. X-ray diffraction (XRD) and Raman results showed that the components of this composite are monoclinic Li3V2(PO4)3, rhombohedral Li2NaV2(PO4)3 and an amorphous carbon-coating. Four potential plateaus occur at the charge/discharge curves and the longest plateau is observed at a potential of 3.8/3.7 V. Therefore, the alkali metal ion intercalation and deintercalation mostly occur at this potential, which is different to that observed for Li3V2(PO4)3. In addition to the stable working potential, this composite also possesses an outstanding electrochemical performance. The sample containing 8.32 % carbon content delivers a capacity of 119 mAh g−1 at 0.2 C rate and 87 mAh g−1 at 12 C. After 50 charge/discharge cycles at 1 C, a coulombic efficiency of 98.4 % is maintained. This enhancement of the electrochemical performance could be attributed to the synergistic effect between monoclinic Li3V2(PO4)3 and rhombohedral Li2NaV2(PO4)3.


References

[1]  M. Y. Saidi, J. Barker, H. Huang, J. L. Swoyer, G. Adamson, J. Power Sources 2013, 119, 266.

[2]  E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, J. Power Sources 2007, 168, 2.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  I. Seo, B. Senthilkumar, K. H. Kim, J. K. Kim, Y. Kim, J. H. Ahn, J. Power Sources 2016, 320, 59.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. R. Madram, M. Faraji, New J. Chem. 2017, 41, 12190.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  W. X. Wang, P. Y. Gao, S. M. Zhang, J. X. Zhang, J. Alloys Compd. 2017, 692, 908.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. Yamada, N. Iwane, Y. Harada, S.‐i. Nishimura, Y. Koyama, I. Tanaka, Adv. Mater. 2010, 22, 3583.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  Q. Li, Z. Wen, C. Fan, T. Zeng, S. Han, RSC Adv. 2018, 8, 7044.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  K. Nagamine, T. Honma, T. Komatsu, J. Power Sources 2011, 196, 9618.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Y. Wu, X. M. Zhao, Z. H. Song, L. P. Lin, C. Q. Du, Z. Y. Tang, J. Power Sources 2015, 274, 782.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Z. Wang, W. He, X. Zhang, Y. Yue, J. Liu, C. Zhang, L. Fang, J. Power Sources 2017, 366, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  K. Cui, S. Hu, Y. Li, Electrochim. Acta 2016, 210, 45.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  C. H. Lim, Y. H. Jung, S. J. Yeom, H.-Y. Lee, D. K. Kim, Electrochim. Acta 2017, 253, 208.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. Cheng, X. Ni, K. Feng, H. Zhang, X. Li, H. Zhang, J. Power Sources 2016, 326, 203.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Y. Yang, Y. Zhang, Z. Hua, X. Wang, H. Peng, Z. Bakenov, Electrochim. Acta 2016, 219, 547.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  L. L. Zhang, G. Peng, G. Liang, P. C. Zhang, Z. H. Wang, Y. Jiang, Y. H. Huang, H. Lin, Electrochim. Acta 2013, 90, 433.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  P. F. Wang, L. Y. Shao, S. S. Qian, T.-F. Yi, H. X. Yu, L. Yan, P. Li, X. T. Lin, M. Shui, J. Shu, Electrochim. Acta 2016, 200, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  K. Cui, S. C. Hu, Y. K. Li, J. Power Sources 2016, 325, 465.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  H. Wang, Y. J. Li, C. H. Huang, Y. D. Zhong, S. Q. Liu, J. Power Sources 2012, 208, 282.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  G. L. Bai, Y. F. Yang, H. Shao, J. Electroanal. Chem. 2013, 688, 98.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. Q. Liang, J. M. Hu, Y. F. Zhang, Y. P. Wang, X. W. Cao, A. Q. Pan, J. Alloys Compd. 2016, 683, 178.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  C. Wu, R. S. Guo, G. L. Cai, J. Power Sources 2016, 306, 779.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. Saravanan, N. Kalaiselvi, J. Power Sources 2017, 366, 207.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  Q. Q. Chen, X. C. Qiao, Y. B. Wang, T. T. Zhang, C. Peng, W. M. Yin, L. Liu, J. Power Sources 2012, 201, 267.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  R. H. Wang, S. H. Xiao, X. H. Li, J. X. Wang, H. J. Guo, F. X. Zhong, J. Alloys Compd. 2013, 575, 268.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Y. Kee, N. Dimov, E. Kobayashi, A. Kitajou, S. Okada, Solid State Ionics 2015, 272, 138.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  L. F. Li, C. L. Fan, T. T. Zeng, X. Zhang, W. H. Zhang, S. C. Han, J. Alloys Compd. 2015, 650, 136.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  J. Yan, W. Yuan, Z. Y. Tang, H. Xie, W. F. Mao, L. Ma, J. Power Sources 2012, 209, 251.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  C. F. Liu, R. Masse, X. H. Nan, G. Z. Cao, Energy Storage Materials 2016, 4, 15.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  Y. Zhang, P. Nie, L. F. Shen, G. Y. Xu, H. F. Deng, H. F. Luo, X. G. Zhang, RSC Adv. 2014, 4, 8627.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  Y. H. Tang, C. Y. Wang, J. J. Zhou, Y. J. Bi, Y. Liu, D. Y. Wang, S. Q. Shi, G. B. Li, J. Power Sources 2013, 227, 199.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Q. Kuang, Y. M. Zhao, Z. Y. Liang, J. Power Sources 2011, 196, 10169.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  J. L. Mao, L. Y. Shao, P. Li, X. T. Lin, M. Shui, N. B. Long, J. Shu, Electrochim. Acta 2015, 173, 96.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  N. Böckenfeld, A. Balducci, J. Power Sources 2013, 235, 265.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  B. L. Cushing, J. B. Goodenough, J. Solid State Chem. 2001, 162, 176.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  Y. H. Tang, C. Y. Wang, J. J. Zhou, Y. J. Bi, Y. Liu, D. Y. Wang, S. Q. Shi, G. B. Li, J. Power Sources 2013, 227, 199.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  A. C. Ferrari, J. Robertson, Philos. Trans. R. Soc., A 2004, 362, 2477.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  L. F. Li, C. L. Fan, X. Zhang, T. T. Zeng, W. H. Zhang, S. C. Han, New J. Chem. 2015, 39, 2627.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  W. F. Mao, Y. Ma, S. K. Liu, Z. Y. Tang, Y. B. Fu, Electrochim. Acta 2014, 147, 498.
         | Crossref | GoogleScholarGoogle Scholar |