Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Carbonized Waste Cotton/Stearic Acid Composites for Photo-Thermal Conversion and Heat Storage

Haifeng Li A B C , Nian Li A C , Cheng Zhang A , Tingting Zhao A , Lidong Sun A B , Mengya Shang A B , Cui Liu A , Yongqiang Zhou A B , Shudong Zhang A D and Zhenyang Wang A D
+ Author Affiliations
- Author Affiliations

A Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China.

B University of Science and Technology of China, Hefei 230026, China.

C These authors contributed equally to this work.

D Corresponding authors. Email: sdzhang@iim.ac.cn; zywang@iim.ac.cn

Australian Journal of Chemistry 71(6) 442-448 https://doi.org/10.1071/CH18076
Submitted: 14 February 2018  Accepted: 27 April 2018   Published: 31 May 2018

Abstract

Photo-thermal conversion is an effective method to utilise solar energy. The generated heat can be converted into electrical energy through the thermoelectric Seebeck effect. However, the key challenge in enhancing solar-thermal-electric conversion is to achieve efficient photo-thermal conversion and temperature difference control. Herein, new composite materials are prepared using abundant and cheap raw materials to simultaneously realise photo-thermal conversion, heat storage, and heat supply for a thermoelectric device. The composites consist of carbonised waste cotton and stearic acid (SA), where carbonised waste cotton can achieve efficient full spectrum photo-thermal conversion and SA can store the generated heat to maintain a stable temperature for a thermoelectric device. The best content of SA is found to be 85 wt-% in the composites due to uniform dispersion and ideal combination. The 3D netlike structure of carbonised waste cotton provides increased heat transfer paths and also prevents leakage of SA during phase change. The maximum phase change enthalpy is 203.6 J g−1 for the composite with 85 wt-% SA, which is almost the same as pure SA, assuring high density heat storage. A light-thermal-electric conversion device is further constructed based on as-prepared composites and a thermoelectric system. The generated electricity can light up a light-emitting diode with strong intensity.


References

[1]  J. H. Han, J. H. Ryu, I. B. Lee, Int. J. Hydrogen Energy 2012, 37, 17321.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  E. Hu, Y. P. Yang, A. Nishimura, F. Yilmaz, A. Kouzani, Appl. Energy 2010, 87, 2881.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Y. Yao, J. H. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater. 2008, 18, 1783.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. Fujiwara, T. Imura, ACS Nano 2015, 9, 5705.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. Kianifar, S. Z. Heris, O. Mahian, Energy 2012, 38, 31.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  N. S. Lewis, Science 2007, 315, 798.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  M. Wang, J. Wang, P. Zhao, Y. Dai, Energy Convers. Manage. 2015, 89, 289.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  F. Meyer, Prog. Polym. Sci. 2015, 47, 70.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  K. M. Gangotri, M. K. Bhimwal, Energy Sources 2010, 32, 1106.

[10]  E. Ye, S. Y. Zhang, S. H. Lim, S. Liu, M. Y. Han, Phys. Chem. Chem. Phys. 2010, 12, 11923.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  H. Xu, N. Zheng, H. Xu, Y. Wu, R. Yang, E. Ye, X. Jin, J. Mol. Struct. 2002, 610, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. Y. Tee, E. Ye, P. H. Pan, C. J. J. Lee, H. K. Hui, S. Y. Zhang, L. D. Koh, Z. L. Dong, M. Y. Han, Nanoscale 2015, 7, 11190.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. T. Si, C. P. Teng, E. Ye, Mater. Sci. Eng. C 2016, 70, 1018.

[14]  R. Mosteo, J. Sarasa, M. P. Ormad, J. L. Ovelleiro, J. Agric. Food Chem. 2008, 56, 7333.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Q. Q. Dou, H. C. Guo, E. Ye, Mater. Sci. Eng. C 2014, 45, 635.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  E. Ye, S. Y. Zhang, S. H. Lim, M. Bosman, Z. Zhang, K. Y. Win, M. Y. Han, Chem. – Eur. J. 2011, 17, 5982.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  E. Ye, H. Tan, S. Li, W. Y. Fan, Angew. Chem. 2006, 118, 1138.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  S. Y. Zhang, E. Ye, S. Liu, S. H. Lim, S. Y. Tee, Z. Dong, M. Y. Han, Adv. Mater. 2012, 24, 4369.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  J. Y. Chan, S. Y. Ang, E. Y. Ye, M. Sullivanc, J. Zhang, M. Lina, Phys. Chem. Chem. Phys. 2015, 17, 25333.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  S. Chatterjee, Nanotechnology 2008, 19, 265701.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Jiang, Z. Chen, D. Wei, H. Peng, Z. Liu, Adv. Mater. 2017, 29, 1.

[22]  C. Zhang, C. Yan, Z. Xue, W. Yu, Y. Xie, T. Wang, Small 2016, 12, 5320.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Adv. Mater. 2015, 27, 4889.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  E. Miyako, C. Hosokawa, M. Kojima, M. Yudasaka, R. Funahashi, I. Oishi, Y. Hagihara, M. Shichiri, M. Takashima, K. Nishio, Y. Yoshida, Angew. Chem. Int. Ed. 2011, 50, 12266.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. H. Liu, H. Gao, E. Ye, M. Low, S. H. Lim, S. Y. Zhang, X. Lieu, S. Tripathy, W. Tremel, M. Y. Han, Chem. Commun. 2010, 46, 4749.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  D. P. Yang, X. Liu, C. P. Teng, C. Owh, K. Y. Win, M. Lin, X. J. Loh, Y. L. Wu, Z. B. Li, E. Ye, Nanoscale 2017, 9, 15753.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  Q. Kong, J. Zhang, Aust. J. Chem. 2008, 61, 72.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  C. J. Coronella, J. G. Lynam, M. T. Reza, M. H. Uddin, Energy Fuels 2014, 25, 1802.

[29]  H. Kleinhans, L. Salmén, J. Appl. Polym. Sci. 2016, 133, 43965.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  Z. Al-Hamamre, M. Saidan, M. Hararah, M. Hararah, K. Rawajfeh, H. E. Alkhasawneh, M. Al-Shannag, Renew. Sustain. Energy Rev. 2017, 67, 295.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  J. Messinger, Aust. J. Chem. 2012, 65, 573.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Z. Zhang, W. Li, J. Kan, Energy Convers. Manage. 2015, 97, 178.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  R. K. Sharma, P. Ganesan, V. V. Tyagi, H. S. C. Metselaar, S. C. Sandaran, Energy Convers. Manage. 2015, 95, 193.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  B. Xu, P. Li, C. Chan, E. Tumilowicz, Appl. Energy 2015, 160, 286.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  S. Ramakrishnan, X. Wang, J. Sanjayan, Appl. Energy 2017, 194, 410.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  N. Sarier, E. Onder, Thermochim. Acta 2012, 540, 7.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  S. Y. Kee, Y. Munusamy, K. S. Ong, Appl. Therm. Eng. 2018, 131, 455.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  V. Kapsalis, D. Karamanis, Appl. Therm. Eng. 2016, 99, 1212.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  Y. Zhang, W. J. Lin, R. Yang, Y. P. Zhang, Q. W. Zhang, Mater. Sci. Forum 2007, 561, 2293.

[40]  K. Tumirah, M. Z. Hussein, Z. Zulkarnain, R. Rafeadah, Energy 2014, 66, 881.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, L. Zhang, J. Therm. Anal. Calorim. 2010, 101, 385.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  H. Kleinhans, L. Salmén, J. Appl. Polym. Sci. 2016, 133, 43965.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  P. Cheng, T. Li, H. Yu, L. Zhi, Z. Liu, L. Lei, J. Phys. Chem. C 2016, 120, 2079.

[44]  R. Xiong, X. Zhang, D. Tian, Z. Zhou, C. Lu, Cellulose 2012, 19, 1189.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  B. Tian, W. Yang, L. Luo, J. Wang, K. Zhang, J. Fan, J. Wu, T. Xing, Sol. Energy 2016, 127, 48.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  W. Shen, T. Hu, P. Wang, H. Sun, W. Fan, ChemPlusChem 2014, 79, 284.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  H. Peng, L. B. Alemany, J. L. Margrave, V. N. Khabashesku, J. Am. Chem. Soc. 2003, 125, 15174.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  L. Chen, R. Zou, W. Xia, Z. Liu, Y. Shang, J. Zhu, Y. Wang, J. Lin, D. Xia, A. Cao, ACS Nano 2012, 6, 10884.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  V. Kapsalis, D. Karamanis, Appl. Therm. Eng. 2016, 99, 1212.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  S. G. Jeong, S. J. Chang, S. We, S. Kim, Sol. Energy Mater. Sol. Cells 2015, 139, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  H. Deng, L. Yang, G. Tao, J. Dai, J. Hazard. Mater. 2009, 166, 1514.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  H. Bi, Z. Yin, X. Cao, X. Xie, C. Tan, X. Huang, B. Chen, F. Chen, Q. Yang, X. Bu, X. Lu, L. Sun, H. Zhang, Adv. Mater. 2016, 8, 28283.