Amino-Functional Ionic Liquids as Efficient Catalysts for the Cycloaddition of Carbon Dioxide to Yield Cyclic Carbonates: Catalytic and Kinetic Investigation
Shuang Yue A C , Qian Song A , Shuliang Zang B , Guichun Deng B and Jun Li A CA Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China.
B Quanzhou Institute of Technology, Quanzhou, Fujian 362000, China.
C Corresponding authors. Email: yueshuang200@163.com; lijun1964307@163.com
Australian Journal of Chemistry 71(6) 407-415 https://doi.org/10.1071/CH17656
Submitted: 27 December 2017 Accepted: 3 April 2018 Published: 30 May 2018
Abstract
Various amino-functional ionic liquids were developed as homogeneous catalysts for the cycloaddition of carbon dioxide to different epoxides yielding the corresponding cyclic carbonates under metal- and solvent-free conditions. The effects of reaction temperature, reaction time, CO2 pressure, and the amount of catalyst on the cycloaddition reaction were investigated. The catalysts could be easily recovered after the reaction and then reused at least eight times without noticeable loss of activity and selectivity. Reaction kinetic studies were undertaken, the reaction was apparently first order with respect to the concentration of epoxide and catalyst. Furthermore, the rate constants were determined over a temperature range of 100–130°C and the activation energy was determined to be 45.9 kJ mol−1. Finally, a possible reaction mechanism was proposed. The amino-functional ionic liquids showed the advantage of high catalytic activity and were easily recyclable for CO2 chemical fixation into valuable chemicals.
References
[1] F. Wu, X. Y. Dou, L. N. He, Lett. Org. Chem. 2010, 7, 73.| Crossref | GoogleScholarGoogle Scholar |
[2] K. M. Bhin, J. Tharun, K. R. Roshan, D. W. Kim, Y. Chung, D. W. Park, J. CO Util. 2017, 17, 112.
| Crossref | GoogleScholarGoogle Scholar |
[3] W. H. Zhang, P. P. He, S. Wu, J. Xu, Y. Li, G. Zhang, X. Y. Wei, Appl. Catal. A 2016, 509, 111.
| Crossref | GoogleScholarGoogle Scholar |
[4] X. Jiang, F. L. Gou, X. Y. Fu, H. W. Jing, J. CO Util. 2016, 16, 264.
| Crossref | GoogleScholarGoogle Scholar |
[5] A. Mirabaud, J. C. Mulatier, A. Martinez, J. P. Dutasta, V. Dufaud, Catal. Today 2017, 281, 387.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. H. Duan, X. Y. Jing, D. D. Li, H. W. Jing, J. Mol. Catal. Chem. 2016, 411, 34.
| Crossref | GoogleScholarGoogle Scholar |
[7] Y. N. Wang, W. H. Ma, D. Y. Wang, Q. Zhong, Chem. Eng. J. 2017, 307, 1047.
| Crossref | GoogleScholarGoogle Scholar |
[8] I. Abidat, C. Morais, S. Pronier, N. Guignard, J. D. Comparot, C. Canaff, T. W. Napporn, A. Habrioux, A. S. Mamede, J. F. Lamonier, K. B. Kokoh, Carbon 2017, 111, 849.
| Crossref | GoogleScholarGoogle Scholar |
[9] B. Zou, C. W. Hu, Curr. Opin. Green Sus. Chem. 2017, 3, 11.
[10] C. Labriere, Eur. J. Med. Chem. 2017, 125, 1.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. Peng, H. J. Yang, Y. C. Geng, Z. D. Wei, L. H. Wang, C. Y. Guo, J. CO Util. 2017, 17, 243.
| Crossref | GoogleScholarGoogle Scholar |
[12] Y. Du, F. Cai, D. L. Kong, L. N. He, Green Chem. 2005, 7, 518.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. Huang, M. Shi, J. Org. Chem. 2003, 68, 6705.
| Crossref | GoogleScholarGoogle Scholar |
[14] W. L. Dai, W. Y. Yang, Y. Zhang, D. Wang, X. B. Luo, X. M. Tu, J. CO Util. 2017, 17, 256.
| Crossref | GoogleScholarGoogle Scholar |
[15] V. B. Saptal, B. M. Bhanage, Curr. Opin. Green Sus. Chem. 2017, 3, 1.
[16] X. Zhang, D. Su, L. F. Xiao, W. Wu, J. CO Util. 2017, 17, 37.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. G. Liang, H. Z. Liu, T. Jiang, J. L. Song, G. Y. Yang, B. X. Han, Chem. Commun. 2011, 47, 2131.
| Crossref | GoogleScholarGoogle Scholar |
[18] P. Goodrich, H. Q. N. Gunaratne, J. Jacquemin, L. L. Jin, Y. T. Lei, K. R. Seddon, ACS Sustain. Chem. & Eng. 2017, 5, 5635.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. C. Rocha, T. Onfroy, J. Pilmé, A. D. Nowicki, A. Roucoux, F. Launay, J. Catal. 2016, 333, 29.
| Crossref | GoogleScholarGoogle Scholar |
[20] A. G. Choghamarani, J. Magn. Magn. Mater. 2016, 401, 832.
| Crossref | GoogleScholarGoogle Scholar |
[21] Y. Leng, D. Lu, P. P. Jiang, C. J. Zhang, J. W. Zhao, W. Zhang, Catal. Commun. 2016, 74, 99.
| Crossref | GoogleScholarGoogle Scholar |
[22] L. Han, H. J. Choi, D. K. Kim, S. W. Park, B. Y. Liu, D. W. Park, J. Mol. Catal. Chem. 2011, 338, 58.
[23] W. L. Dai, L. Chen, S. F. Yin, W. H. Li, Y. Y. Zhang, S. L. Luo, C. T. Au, Catal. Lett. 2010, 137, 74.
| Crossref | GoogleScholarGoogle Scholar |
[24] Y. Xie, Z. F. Zhang, T. Jiang, J. L. He, B. X. Han, T. B. Wu, K. L. Ding, Angew. Chem. Int. Ed. 2007, 46, 7255.
| Crossref | GoogleScholarGoogle Scholar |
[25] G. J. Huang, Y. N. Zou, M. Xiao, S. J. Wang, W. K. Luo, D. M. Han, Y. Z. Meng, Polym. Degrad. Stabil. 2015, 117, 16.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. Sibaouih, P. Ryan, M. Leskelä, B. Rieger, T. Repo, Appl. Catal. A. 2009, 365, 194.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. L. Song, B. B. Zhang, P. Zhang, J. Ma, J. L. Liu, H. L. Fan, T. Jiang, Catal. Today 2012, 183, 130.
| Crossref | GoogleScholarGoogle Scholar |
[28] A. Decortes, A. M. Castilla, A. W. Kleij, Angew. Chem. Int. Ed. 2010, 49, 9822.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. A. C. Osma, C. A. Moreno, A. L. Sánchez, J. Martínez, M. North, A. Otero, Catal. Sci. Technol. 2014, 4, 1674.
| Crossref | GoogleScholarGoogle Scholar |
[30] Y. F. Zhi, J. L. Mu, S. Y. Shan, H. Y. Su, S. S. Wu, J. Taiwan Inst. Chem. Eng. 2016, 61, 351.
| Crossref | GoogleScholarGoogle Scholar |
[31] A. H. Jadhav, J. M. Thorat, K. Lee, A. C. Lim, H. Kang, J. G. Seo, Catal. Today 2016, 265, 56.
| Crossref | GoogleScholarGoogle Scholar |
[32] J. Liu, A. Q. Wang, H. W. Jing, Chin. J. Catal. 2014, 35, 1669.
| Crossref | GoogleScholarGoogle Scholar |
[33] T. Cao, L. T. Sun, Y. Shi, L. Hua, R. Zhang, L. Guo, W. W. Zhu, Z. S. Hou, Chin. J. Catal. 2012, 33, 416.
| Crossref | GoogleScholarGoogle Scholar |
[34] Q. J. Fan, J. H. Liu, J. Chen, C. G. Xia, Chin. J. Catal. 2012, 33, 1435.
[35] C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, E. J. Maginn, J. Am. Chem. Soc. 2004, 126, 5300.
| Crossref | GoogleScholarGoogle Scholar |
[36] M. B. Shiflett, A. Yokozeki, Ind. Eng. Chem. Res. 2005, 44, 4453.
| Crossref | GoogleScholarGoogle Scholar |
[37] J. M. Sun, S. Fujita, M. Arai, J. Organomet. Chem. 2005, 690, 3490.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. Q. Wang, X. D. Yue, F. Cai, L. N. He, Catal. Commun. 2007, 8, 167.
| Crossref | GoogleScholarGoogle Scholar |
[39] E. H. Lee, J. Y. Ahn, M. M. Dharman, D. W. Park, Catal. Today 2008, 131, 130.
| Crossref | GoogleScholarGoogle Scholar |
[40] S. Udayakumar, S. W. Park, D. W. Park, B. S. Choi, Catal. Commun. 2008, 9, 1563.
| Crossref | GoogleScholarGoogle Scholar |
[41] L. Wang, T. F. Huang, C. Chen, J. L. Zhang, H. Y. He, S. J. Zhang, J. CO Util. 2016, 14, 61.
| Crossref | GoogleScholarGoogle Scholar |
[42] T. Sakai, Y. Tsutsumi, T. Ema, Green Chem. 2008, 10, 337.
| Crossref | GoogleScholarGoogle Scholar |
[43] J. Melendez, M. North, P. Villuendas, C. Young, Dalton Trans. 2011, 40, 3885.
| Crossref | GoogleScholarGoogle Scholar |
[44] E. D. Bates, R. D. Mayton, I. Ntai, J. H. Davis, J. Am. Chem. Soc. 2002, 124, 926.
| Crossref | GoogleScholarGoogle Scholar |
[45] M. S. Liu, X. Li, X. L. Lin, L. Liang, X. X. Gao, J. M. Sun, J. Mol. Catal. Chem. 2016, 412, 20.
| Crossref | GoogleScholarGoogle Scholar |
[46] J. Sun, S. J. Zhang, W. G. Cheng, J. Y. Ren, Tetrahedron Lett. 2008, 49, 3588.
| Crossref | GoogleScholarGoogle Scholar |
[47] D. W. Li, J. Bi, L. S. Lian, L. X. Biao, T. X. Man, A. C. Tong, Appl. Catal. A 2014, 470, 183.
| Crossref | GoogleScholarGoogle Scholar |
[48] L. F. Xiao, D. W. Lv, D. Su, W. Wu, H. F. Li, J. Clean. Prod. 2014, 67, 285.
| Crossref | GoogleScholarGoogle Scholar |
[49] J. J. Chen, W. W. Li, X. L. Li, H. Q. Yu, Phys. Chem. Chem. Phys. 2012, 14, 4589.
| Crossref | GoogleScholarGoogle Scholar |
[50] H. Peng, Y. L. Zhou, J. Liu, H. B. Zhang, C. L. Xia, X. H. Zhou, RSC Adv. 2013, 3, 6859.
| Crossref | GoogleScholarGoogle Scholar |
[51] P. Sharma, S. D. Park, K. T. Park, S. C. Nam, S. K. Jeong, Y. Yoon, H. Baek, Chem. Eng. J. 2012, 193–194, 267.
| Crossref | GoogleScholarGoogle Scholar |
[52] C. T. Yue, D. Su, X. Zhang, W. Wu, L. F. Xiao, Catal. Lett. 2014, 144, 1313.
| Crossref | GoogleScholarGoogle Scholar |
[53] H. Kawanami, A. Sasaki, K. Matsuia, Y. Ikushima, Chem. Commun. 2003, 896.
| Crossref | GoogleScholarGoogle Scholar |
[54] J. M. Sun, S. I. Fujita, F. Y. Zhao, M. Arai, Green Chem. 2004, 6, 613.
| Crossref | GoogleScholarGoogle Scholar |
[55] L. Han, H. J. Choi, S. J. Choi, B. Y. Liu, D. W. Park, Green Chem. 2011, 13, 1023.
| Crossref | GoogleScholarGoogle Scholar |
[56] C. X. Miao, J. Q. Wang, Y. Wu, Y. Du, L. N. He, ChemSusChem 2008, 1, 236.
| Crossref | GoogleScholarGoogle Scholar |
[57] M. S. Liu, L. Liang, X. Li, X. X. Gao, J. M. Sun, Green Chem. 2016, 18, 2851.
| Crossref | GoogleScholarGoogle Scholar |
[58] B. Zou, L. Hao, L. Y. Fan, Z. M. Gao, S. L. Chen, H. Li, C. W. Hu, J. Catal. 2015, 329, 119.
| Crossref | GoogleScholarGoogle Scholar |
[59] B. Chatelet, L. Joucla, J. P. Dutasta, A. Martinez, K. C. Szeto, V. Dufaud, J. Am. Chem. Soc. 2013, 135, 5348.
| Crossref | GoogleScholarGoogle Scholar |
[60] W. Clegg, R. W. Harrington, M. North, R. Pasquale, Chem. – Eur. J. 2010, 16, 6828.
| Crossref | GoogleScholarGoogle Scholar |
[61] T. Takahashi, T. Watahiki, S. Kitazume, H. Yasuda, T. Sakakura, Chem. Commun. 2006, 37, 1664.
| Crossref | GoogleScholarGoogle Scholar |
[62] J. Sun, J. Q. Wang, W. Q. Cheng, J. X. Zhang, X. H. Li, S. J. Zhang, Y. B. She, Green Chem. 2012, 14, 654.
| Crossref | GoogleScholarGoogle Scholar |
[63] S. Q. Hu, Z. F. Zhang, Y. X. Zhou, B. X. Han, H. L. Fan, W. J. Li, J. L. Song, Y. Xie, Green Chem. 2008, 10, 1280.
| Crossref | GoogleScholarGoogle Scholar |
[64] J. H. Shi, J. L. Song, J. Ma, Z. F. Zhang, H. L. Fan, B. X. Han, Pure Appl. Chem. 2013, 85, 1633.
| Crossref | GoogleScholarGoogle Scholar |
[65] K. R. Roshan, G. Mathai, J. Kim, J. Tharun, G. A. Park, D. W. Park, Green Chem. 2012, 14, 2933.
| Crossref | GoogleScholarGoogle Scholar |
[66] J. Tharun, G. Mathai, A. C. Kathalikkattil, R. Roshan, J. Y. Kwak, D. W. Park, Green Chem. 2013, 15, 1673.
| Crossref | GoogleScholarGoogle Scholar |
[67] J. Ma, J. Liu, Z. F. Zhang, B. X. Han, Green Chem. 2012, 14, 2410.
| Crossref | GoogleScholarGoogle Scholar |
[68] J. Tharun, Y. Hwang, R. Roshan, S. Ahn, A. C. Kathalikkattil, D. W. Park, Catal. Sci. Technol. 2012, 2, 1674.
| Crossref | GoogleScholarGoogle Scholar |
[69] K. R. Roshan, J. Tharun, A. C. Kathalikkattil, D. W. Kim, B. Kim, D. W. Park, Appl. Catal. A 2013, 467, 17.
| Crossref | GoogleScholarGoogle Scholar |
[70] S. Wu, B. S. Wang, Y. Y. Zhang, E. H. M. Elageed, H. H. Wu, G. H. Gao, J. Mol. Catal. Chem. 2016, 418–419, 1.
[71] K. R. Roshan, T. Jose, D. Kim, K. A. Cherian, D. W. Park, Catal. Sci. Technol. 2014, 4, 963.
| Crossref | GoogleScholarGoogle Scholar |
[72] Q. Gong, H. D. Luo, J. Cao, Y. H. Shang, H. B. Zhang, W. J. Wang, X. H. Zhou, Aust. J. Chem. 2012, 65, 381.
[73] M. S. Liu, K. Q. Gao, L. Liang, F. X. Wang, L. Shi, L. Sheng, J. M. Sun, Phys. Chem. Chem. Phys. 2015, 17, 5959.
| Crossref | GoogleScholarGoogle Scholar |
[74] J. Q. Wang, W. G. Cheng, J. Sun, T. Y. Shi, X. P. Zhang, S. J. Zhang, RSC Adv. 2014, 4, 2360.
| Crossref | GoogleScholarGoogle Scholar |
[75] M. S. Liu, B. Liu, L. Shi, F. X. Wang, L. Liang, J. M. Sun, RSC Adv. 2015, 5, 960.
| Crossref | GoogleScholarGoogle Scholar |
[76] M. S. Liu, K. Q. Gao, L. Liang, J. M. Sun, L. Sheng, M. Arai, Catal. Sci. Technol. 2016, 6, 6406.
| Crossref | GoogleScholarGoogle Scholar |
[77] G. Liu, M. Q. Hou, J. Y. Song, T. Jiang, H. L. Fan, Z. F. Zhang, B. X. Han, Green Chem. 2010, 12, 65.
| Crossref | GoogleScholarGoogle Scholar |
[78] G. P. Kar, S. Biswas, R. Rohini, S. Bose, J. Mater. Chem. A 2015, 3, 7974.
| Crossref | GoogleScholarGoogle Scholar |