Synthesis, Photophysical, and Antioxidant Properties of Rhodamine B Decorated Novel Dendrimers
Jothinathan Sathiya Savithri A and Perumal Rajakumar A BA Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai, 600 025, India.
B Corresponding author. Email: perumalrajakumar@gmail.com
Australian Journal of Chemistry 71(6) 399-406 https://doi.org/10.1071/CH17652
Submitted: 22 December 2017 Accepted: 27 March 2018 Published: 14 May 2018
Abstract
Novel triazole bridged dendrimers with rhodamine B derivative as surface groups have been achieved using click chemistry by both divergent and convergent approaches. Rhodamine B decorated dendrimers 1, 2, and 3 were synthesised up to the second generation with spirolactam grafted at the terminal. The UV and fluorescence intensity increases with the increase in the dendritic generation. The synthesised rhodamine B decorated dendrimers show significant antioxidant behaviour compared with the standards butylated hydroxy toluene (BHT) and gallic acid when tested by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay and hydroxyl radical scavenging assay methods, respectively. Rhodamine B decorated higher generation dendrimers exhibit better antioxidant activity than the lower generation dendrimers due to the presence of a greater number of triazole branching units and rhodamine B derivative surface units.
References
[1] J. M. J. Fréchet, Science 1994, 263, 1710.| Crossref | GoogleScholarGoogle Scholar |
[2] D. K. Smith, F. Diederich, Chem. – Eur. J. 1998, 4, 1353.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. Hecht, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2001, 40, 74.
| Crossref | GoogleScholarGoogle Scholar |
[4] S.-E. Stiriba, H. Frey, R. Haag, Angew. Chem. Int. Ed. 2002, 41, 1329.
| Crossref | GoogleScholarGoogle Scholar |
[5] See pp. 67–69 in: J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn 2006 (Springer: New York, NY).
[6] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
| Crossref | GoogleScholarGoogle Scholar |
[7] C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
| Crossref | GoogleScholarGoogle Scholar |
[8] P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Fréchet, K. B. Sharpless, V. V. Fokin, Angew. Chem. Int. Ed. 2004, 43, 3928.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. Malkoch, K. Schleicher, E. Drockenmuller, C. J. Hawker, T. P. Russell, P. Wu, V. V. Fokin, Macromolecules 2005, 38, 3663.
| Crossref | GoogleScholarGoogle Scholar |
[10] G. Franc, A. Kakkar, Chem. Commun. 2008, 5267.
| Crossref | GoogleScholarGoogle Scholar |
[11] D. Kushwaha, V. K. Tiwari, J. Org. Chem. 2013, 78, 8184.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. W. Lee, B. K. Kim, Bull. Korean Chem. Soc. 2005, 26, 1790.
| Crossref | GoogleScholarGoogle Scholar |
[13] N. G. Aher, V. S. Pore, N. N. Mishra, A. Kumar, P. K. Shukla, A. Sharma, M. K. Bhat, Bioorg. Med. Chem. Lett. 2009, 19, 759.
| Crossref | GoogleScholarGoogle Scholar |
[14] B. Garudachari, A. M. Isloor, M. N. Satyanarayana, H. K. Fun, G. Hegde, Eur. J. Med. Chem. 2014, 74, 324.
| Crossref | GoogleScholarGoogle Scholar |
[15] G. R. Pereira, G. C. Brandao, L. M. Arantes, H. A. de Oliveira, R. C. de Paula, M. F. do Nascimento, F. M. dos Santos, R. K. da Rocha, J. C. Lopes, A. B. de Oliveira, Eur. J. Med. Chem. 2014, 73, 295.
| Crossref | GoogleScholarGoogle Scholar |
[16] D. R. Buckle, C. J. M. Rockell, H. Smith, B. A. Spicer, J. Med. Chem. 1986, 29, 2262.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. J. Giffin, H. Heaslet, A. Birk, Y. C. Lin, G. Cauvi, C. H. Wong, D. E. McRee, J. H. Elder, C. D. Stout, B. E. Torbett, J. Med. Chem. 2008, 51, 6263.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. P. Tripathi, A. K. Yadav, A. Ajay, S. S. Bisht, V. Chaturvedi, S. K. Sinha, Eur. J. Med. Chem. 2010, 45, 142.
| Crossref | GoogleScholarGoogle Scholar |
[19] M. Aufort, J. Herscovici, P. Bouhours, N. Moreau, C. Girard, Bioorg. Med. Chem. Lett. 2008, 18, 1195.
| Crossref | GoogleScholarGoogle Scholar |
[20] A. Kamal, N. Shankaraiah, V. Devaiah, K. Laxma Reddy, A. Juvekar, S. Sen, N. Kurian, S. Zingde, Bioorg. Med. Chem. Lett. 2008, 18, 1468.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. Kumar, I. Ahmad, B. S. Chhikara, R. Tiwari, D. Mandal, K. Parang, Bioorg. Med. Chem. Lett. 2011, 21, 1342.
| Crossref | GoogleScholarGoogle Scholar |
[22] P. Singh, S. Sachdeva, R. Raj, V. Kumar, M. P. Mahajan, S. Nasser, L. Vivas, J. Gut, P. J. Rosenthal, T. S. Feng, K. Chibale, Bioorg. Med. Chem. Lett. 2011, 21, 4561.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Farooq, A. Shakeel-u-Rehman, A. Hussain, A. Hamid, M. A. Qurishi, S. Koul, Eur. J. Med. Chem. 2014, 84, 545.
| Crossref | GoogleScholarGoogle Scholar |
[24] H. Singh, J. Sindhu, J. M. Khurana, C. Sharma, K. R. Aneja, RSC Adv. 2014, 4, 5915.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. Kadoor, B. Kalluraya, S. Shetty, M. Ballal, V. Shtty, J. Chem. Pharm. Res. 2014, 6, 374.
[26] H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, Chem. Soc. Rev. 2008, 37, 1465.
| Crossref | GoogleScholarGoogle Scholar |
[27] X. F. Yang, X. Q. Guo, Y. B. Zhao, Talanta 2002, 57, 883.
[28] M. Beija, C. A. M. Afonso, J. M. G. Martinho, Chem. Soc. Rev. 2009, 38, 2410.
| Crossref | GoogleScholarGoogle Scholar |
[29] N. Nagahori, R. T. Lee, S. I. Nishimura, ChemBioChem 2002, 3, 836.
| Crossref | GoogleScholarGoogle Scholar |
[30] Y. Li, Y. Y. Cheng, T. W. Xu, Curr. Drug Discov. Technol. 2007, 4, 246.
| Crossref | GoogleScholarGoogle Scholar |
[31] P. Rajakumar, K. Ganesan, Synlett 2004, 12, 2236.
| Crossref | GoogleScholarGoogle Scholar |
[32] P. Rajakumar, K. Ganesan, S. Jayavelu, K. Murugesan, Synlett 2005, 7, 1121.
| Crossref | GoogleScholarGoogle Scholar |
[33] P. Rajakumar, K. Ganesan, Tetrahedron Asymmetry 2005, 16, 2295.
| Crossref | GoogleScholarGoogle Scholar |
[34] P. Rajakumar, N. Venkatesan, K. Sekar, S. Nagaraj, R. Rengasamy, Eur. J. Med. Chem. 2010, 45, 1220.
| Crossref | GoogleScholarGoogle Scholar |
[35] P. Rajakumar, S. Raja, Synth. Commun. 2009, 39, 3888.
| Crossref | GoogleScholarGoogle Scholar |
[36] P. Rajakumar, A. Kannan, R. Anandhan, New J. Chem. 2014, 38, 1594.
| Crossref | GoogleScholarGoogle Scholar |
[37] P. Rajakumar, C. Satheeshkumar, S. Raja, Tetrahedron Lett. 2010, 51, 5167.
| Crossref | GoogleScholarGoogle Scholar |
[38] T. H. Kwon, M. K. Kim, J. Kwon, T. Y. Shin, S. J. Park, C. L. Lee, J. J. Kim, J. I. Hong, Chem. Mater. 2007, 19, 3673.
| Crossref | GoogleScholarGoogle Scholar |
[39] H. Fenglin, L. Ruili, H. Bao, M. Liang, Fitoterapia 2004, 75, 14.
| Crossref | GoogleScholarGoogle Scholar |
[40] C. Li, P. Sun, H. Wang, L. Ma, W. Kang, Z. Zhanga, J. Wanga, New J. Chem. 2017, 41, 6395.
| Crossref | GoogleScholarGoogle Scholar |
[41] Y. Li, Y. Y. Cheng, T. W. Xu, Curr. Drug Discov. Technol. 2007, 4, 246.
| Crossref | GoogleScholarGoogle Scholar |
[42] Y. Rajeshwar, G. P. Senthil Kumar, M. Gupta, U. K. Mazumdar, Eur. Bull. Drug Res. 2005, 13, 31.
[43] P. Rajakumar, A. Kannan, V. Saravanan, Asian J. Org. Chem. 2016, 5, 1155.
| Crossref | GoogleScholarGoogle Scholar |