Click Synthesis of Shape-Persistent Azodendrimers and their Orthogonal Self-Assembly to Nanofibres
Tamer El Malah A B and Hany F. Nour AA National Research Centre, Chemical Industries Research Division, Department of Photochemistry, 33 El Buhouth Street, PO Box 12622, Giza, Egypt.
B Corresponding author. Email: tmara_nrc3000@yahoo.com
Australian Journal of Chemistry 71(6) 463-472 https://doi.org/10.1071/CH17644
Submitted: 16 December 2017 Accepted: 17 May 2018 Published: 14 June 2018
Abstract
The copper(i)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction has been efficiently utilized to synthesize a series of dendrons with amino functionalities. The aminodendrons successfully underwent azodimerization to furnish a series of pyridyl- and phenyl-based azodendrimers with peripheral alkyl or ether side chain substituents. The molecular structures of the azodendrimers were fully assigned using different spectroscopic techniques, such as 1H NMR and 13C NMR, and the molecular weights were determined using MALDI-TOF mass spectrometry. The molecular self-assembly of the azodendrimers was investigated by scanning electron microscopy and transmission electron microscopy, which revealed the formation of highly ordered and uniform self-assembled nanofibres.
References
[1] S. I. Stupp, L. C. Palmer, Chem. Mater. 2014, 26, 507.| Crossref | GoogleScholarGoogle Scholar |
[2] N. C. Seeman, J. Theor. Biol. 1982, 99, 237.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. D. Bangham, M. M. Standish, J. C. Watkins, J. Mol. Biol. 1965, 13, 238.
| Crossref | GoogleScholarGoogle Scholar |
[4] K. Yabuuchi, E. Marfo-Owusu, T. Kato, Org. Biomol. Chem. 2003, 1, 3464.
| Crossref | GoogleScholarGoogle Scholar |
[5] C.-C. Cheng, J.-H. Wang, W.-T. Chuang, Z.-S. Liao, J.-J. Huang, S.-Y. Huang, W.-L. Fan, D.-J. Lee, Polym. Chem. 2017, 8, 3294.
| Crossref | GoogleScholarGoogle Scholar |
[6] H.-K. Cheng, M. C.-L. Yeung, V. W.-W. Yam, ACS Appl. Mater. Interfaces 2017, 9, 36220.
| Crossref | GoogleScholarGoogle Scholar |
[7] Z. Shen, T. Wang, M. Liu, Chem. Commun. 2014, 2096.
| Crossref | GoogleScholarGoogle Scholar |
[8] G. S. Ananchenko, K. A. Udachin, M. Pojarova, A. Dubes, J. A. Ripmeester, S. Jebors, A. W. Coleman, Cryst. Growth Des. 2006, 6, 2141.
| Crossref | GoogleScholarGoogle Scholar |
[9] Z. Liu, J. Qiao, Y. Tian, M. Wu, Z. Niu, Y. Huang, Langmuir 2014, 30, 8938.
| Crossref | GoogleScholarGoogle Scholar |
[10] G. Mariani, R. Schweins, F. Gröhn, Macromolecules 2016, 49, 8661.
| Crossref | GoogleScholarGoogle Scholar |
[11] T. Akutagawa, K. Kakiuchi, T. Hasegawa, T. Nakamura, C. A. Christensen, J. Becher, Langmuir 2004, 20, 4187.
| Crossref | GoogleScholarGoogle Scholar |
[12] S. Satapathy, E. Prasad, ACS Appl. Mater. Interfaces 2016, 8, 26176.
| Crossref | GoogleScholarGoogle Scholar |
[13] U. Hahn, F. Cardinalia, J.-F. Nierengarten, New J. Chem. 2007, 31, 1128.
| Crossref | GoogleScholarGoogle Scholar |
[14] M. Peterca, V. Percec, M. R. Imam, P. Leowanawat, K. Morimitsu, P. A. Heiney, J. Am. Chem. Soc. 2008, 130, 14840.
| Crossref | GoogleScholarGoogle Scholar |
[15] Y. Ma, S. V. Kolotuchin, S. C. Zimmerman, J. Am. Chem. Soc. 2002, 124, 13757.
| Crossref | GoogleScholarGoogle Scholar |
[16] G. Iftime, F. L. Labarthet, A. Natansohn, P. Rochon, K. Murti, Chem. Mater. 2002, 14, 168.
| Crossref | GoogleScholarGoogle Scholar |
[17] X. Shen, H. Liu, Y. Li, S. Liu, Macromolecules 2008, 41, 2421.
| Crossref | GoogleScholarGoogle Scholar |
[18] L.-X. Liao, F. Stellacci, D. V. McGrath, J. Am. Chem. Soc. 2004, 126, 2181.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. Li, D. V. McGrath, J. Am. Chem. Soc. 2000, 122, 6795.
| Crossref | GoogleScholarGoogle Scholar |
[20] T. El Malah, A. Ciesielski, L. Piot, S. I. Troyanov, U. Mueller, S. Weidner, P. Samorì, S. Hecht, Nanoscale 2012, 4, 467.
| Crossref | GoogleScholarGoogle Scholar |
[21] L. Piot, R. M. Meudtner, T. El Malah, S. Hecht, P. Samorì, Chem. – Eur. J. 2009, 15, 4788.
| Crossref | GoogleScholarGoogle Scholar |
[22] D. Zornik, R. M. Meudtner, T. El Malah, C. M. Thiele, S. Hecht, Chem. – Eur. J. 2011, 17, 1473.
| Crossref | GoogleScholarGoogle Scholar |
[23] K. Orito, T. Hatakeyama, M. Takeo, S. Uchiito, M. Tokuda, H. Suginome, Tetrahedron 1998, 54, 8403.
| Crossref | GoogleScholarGoogle Scholar |
[24] T. El Malah, S. Rolf, S. M. Weidner, A. F. Thünemann, S. Hecht, Chem. – Eur. J. 2012, 18, 5837.
| Crossref | GoogleScholarGoogle Scholar |
[25] Y.-T. Chan, C. N. Moorefield, G. R. Newkome, Chem. Commun. 2009, 6928.
| Crossref | GoogleScholarGoogle Scholar |
[26] C. C. Lee, C. Grenier, E. W. Meijer, A. P. H. J. Schenning, Chem. Soc. Rev. 2009, 38, 671.
| Crossref | GoogleScholarGoogle Scholar |
[27] L. Marin, S. Shova, C. Dumea, E. Bicu, D. Belei, Cryst. Growth Des. 2017, 17, 3731.
| Crossref | GoogleScholarGoogle Scholar |
[28] H. Li, X. Zheng, H. Su, J. W. Y. Lam, K. S. Wong, S. Xue, X. Huang, X. Huang, B. S. Li, B. Z. Tang, Sci. Rep. 2016, 6, 1927.
| Crossref | GoogleScholarGoogle Scholar |
[29] T. Koga, M. Matsuoka, N. Higashi, J. Am. Chem. Soc. 2005, 127, 17596.
| Crossref | GoogleScholarGoogle Scholar |
[30] H. Zhang, X. Xin, J. Sun, L. Zhao, J. Shen, Z. Song, S. Yuan, J. Colloid Interface Sci. 2016, 484, 97.
| Crossref | GoogleScholarGoogle Scholar |
[31] S. H. Jung, J. Jeon, H. Kim, J. Jaworski, J. H. Jun, Nanoscale 2015, 7, 15238.
| Crossref | GoogleScholarGoogle Scholar |
[32] M. Takafuji, F. N. Robel, H. Ihara, Colloid Interface Sci. Commun. 2017, 19, 9.
| Crossref | GoogleScholarGoogle Scholar |
[33] J. A. Kaplan, P. Barthélémy, M. W. Grinstaff, Chem. Commun. 2016, 5860.
| Crossref | GoogleScholarGoogle Scholar |
[34] P. Suvannasara, N. Praphairaksit, N. Muangsin, RSC Adv. 2014, 4, 58664.
| Crossref | GoogleScholarGoogle Scholar |
[35] H.-W. Jun, S. E. Paramonov, J. D. Hartgerink, Soft Matter 2006, 2, 177.
| Crossref | GoogleScholarGoogle Scholar |
[36] W. Zhou, H. Yu, RSC Adv. 2013, 3, 22155.
| Crossref | GoogleScholarGoogle Scholar |
[37] H.-S. Liao, J. Lin, Y. Liu, P. Huang, A. Jin, X. Chen, Nanoscale 2016, 8, 14814.
| Crossref | GoogleScholarGoogle Scholar |
[38] H. Dong, S. E. Paramonov, J. D. Hartgerink, J. Am. Chem. Soc. 2008, 130, 13691.
| Crossref | GoogleScholarGoogle Scholar |
[39] M. Kimura, T. Hatanaka, H. Nomoto, J. Takizawa, T. Fukawa, Y. Tatewaki, H. Shirai, Chem. Mater. 2010, 22, 5732.
| Crossref | GoogleScholarGoogle Scholar |
[40] Y. Cao, D. Wang, P. Zhou, Y. Zhao, Y. Sun, J. Wang, Langmuir 2017, 33, 5446.
| Crossref | GoogleScholarGoogle Scholar |
[41] J. Stewart, J. Comput. Chem. 1989, 10, 221.
| Crossref | GoogleScholarGoogle Scholar |
[42] HyperChem (trial version). Available from http://www.hyper.com/ (accessed 28 May 2018).
[43] A. Cadeddu, A. Ciesielski, T. El Malah, S. Hecht, P. Samorì, Chem. Commun. 2011, 10578.
| Crossref | GoogleScholarGoogle Scholar |
[44] S.-H. Hwang, C. N. Moorerield, H.-C. Cha, P. Wang, G. R. Newkome, Des. Monomers Polym. 2006, 9, 413.
| Crossref | GoogleScholarGoogle Scholar |
[45] W. E. White, K. L. Yielding, Biochem. Biophys. Res. Commun. 1973, 52, 1129.
| Crossref | GoogleScholarGoogle Scholar |