Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Investigating the Resonance in Nitric Acid and the Nitrate Anion Based on a Modern Bonding Analysis*

Malte Fugel A , Florian Kleemiss A , Lorraine A. Malaspina A , Rumpa Pal A , Peter R. Spackman B , Dylan Jayatilaka B and Simon Grabowsky A C
+ Author Affiliations
- Author Affiliations

A University of Bremen, Department 2 – Biology/Chemistry, Institute of Inorganic Chemistry and Crystallography, Leobener Str. 3, 28359 Bremen, Germany.

B University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Perth, WA 6009, Australia.

C Corresponding author. Email: simon.grabowsky@uni-bremen.de

Australian Journal of Chemistry 71(4) 227-237 https://doi.org/10.1071/CH17583
Submitted: 10 November 2017  Accepted: 22 December 2017   Published: 19 February 2018

Abstract

The nitrate anion, NO3, is often regarded as a textbook example for the very fundamental concept of resonance. Usually, three equivalent resonance structures with one N–O double bond and two N–O single bonds are considered. Consequently, each of the three N–O bonds should have a partial double bond character. In this study, we analyse the resonance in NO3 in comparison with the related species HNO3 and FNO3 by applying a combination of the Quantum Theory of Atoms in Molecules (QTAIM), a natural bond orbital (NBO) analysis, the electron localizability indicator (ELI), and valence bond (VB) calculations. Despite the fundamental importance of nitrate salts and nitric acid for the environment, chemistry, and industry, a bonding analysis is absent from the literature so far. The classical resonance structures are clearly reflected by the bond analysis tools, but are not the only contributions to the bonding situation. The resonance in HNO3 and FNO3 is greatly perturbed by the hydrogen and fluorine atoms. In addition to theoretical calculations, experimental electron density and wave function refinements were carried out on a KNO3 crystal.


References

[1]  (a) G. N. Lewis, J. Am. Chem. Soc. 1916, 38, 762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC28XlvFSl&md5=f8f61fce4d08033d66f1cd204ec06820CAS |
         (b) G. N. Lewis, Valence and the Structure of Atoms and Molecules 1923 (American Chemical Society: New York, NY).
      (c) G. H. Purser, J. Chem. Educ. 1999, 76, 1013.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Y. Mo, P. von Ragué Schleyer, Chem. – Eur. J. 2006, 12, 2009.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Kls7k%3D&md5=1bdb1289718a2e002aabcb0169ef600bCAS |

[3]  M. K. Cyranski, T. M. Krygowski, A. R. Katritzky, P. von Ragué Schleyer, J. Org. Chem. 2002, 67, 1333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosV2gsA%3D%3D&md5=089df5eb4439ada90182301dbc22ffa3CAS |

[4]     (a) F. Weinhold, C. R. Landis, Valency and Bonding 2005 (Cambridge University Press: Cambridge, UK).
      (b) C. L. Deasy, Chem. Rev. 1945, 36, 145.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. E. Reed, P. von Ragué Schleyer, J. Am. Chem. Soc. 1990, 112, 1434.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) X. Fradera, M. A. Austen, R. F. W. Bader, J. Phys. Chem. A 1999, 103, 304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotFaisbc%3D&md5=58492c3025c98ac7d8fc66203a600f51CAS |
      (b) L. Zhao, M. Hermann, N. Holzmann, G. Frenking, Coord. Chem. Rev. 2017, 344, 163.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. Fugel, J. Beckmann, D. Jayatilaka, G. V. Gibbs, S. Grabowsky, under review in Chem. – Eur. J.

[7]  E. Hupf, M. Olaru, C. I. Rat, M. Fugel, C. B. Hübschle, E. Lork, S. Grabowsky, S. Mebs, J. Beckmann, Chem. – Eur. J. 2017, 23, 10699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFegur7M&md5=216ddd72f57a52a46ff32dc8a3fd7f5cCAS |

[8]  (a) J. O. Lundberg, M. T. Gladwin, A. Ahluwalia, N. Benjamin, N. S. Bryan, A. Butler, P. Cabrales, A. Fago, M. Feelisch, P. C. Ford, B. A. Freeman, M. Frenneaux, J. Friedman, M. Kelm, C. G. Kevil, D. B. Kim-Shapiro, A. V. Kozlov, J. R. Lancaster, D. J. Lefer, K. McColl, K. McCurry, R. P. Patel, J. Petersson, T. Rassaf, V. P. Reutov, G. B. Richter-Addo, A. Schechter, S. Shiva, K. Tsuchiya, E. E. van Faassen, A. J. Webb, B. S. Zuckerbraun, J. L. Zweier, E. Weitzberg, Nat. Chem. Biol. 2009, 5, 865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWlsLnM&md5=a99e3b7160639a0328488710261589a2CAS |
      (b) R. F. Spalding, M. E. Exner, J. Environ. Qual. 1993, 22, 392.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. S. Umar, M. Iqbal, Agron. Sustain. Dev. 2007, 27, 45.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) M. R. Waterland, D. Stockwell, A. Myers Kelley, J. Chem. Phys. 2001, 114, 6249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlKlsbY%3D&md5=95ad922cd45d5ada0a325db9dc9b9c70CAS |
      (b) M. R. Waterland, A. Myers Kelley, J. Chem. Phys. 2000, 113, 6760.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X.-B. Wang, X. Yang, L.-S. Wang, J. B. Nicholas, J. Chem. Phys. 2002, 116, 561.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  B. Casper, D. A. Dixon, H.-G. Mack, S. E. Ulic, H. Willner, H. Oberhammer, J. Am. Chem. Soc. 1994, 116, 8317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1Cgtb8%3D&md5=13cd9706517f693a282f3075b94561dbCAS |

[11]  N. K. Hansen, P. Coppens, Acta Crystallogr. Sect. A 1978, 34, 909.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. Woinska, D. Jayatilaka, B. Dittrich, R. Flaig, P. Luger, K. Wozniak, P. M. Dominiak, S. Grabowsky, ChemPhysChem 2017, 18, 3334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhvVCjtLbE&md5=b89f4e5ca32e673a4e38d96343e40a62CAS |

[13]  R. Herbst-Irmer, J. Henn, J. J. Holstein, C. B. Hübschle, B. Dittrich, D. Stern, D. Kratzert, D. Stalke, J. Phys. Chem. A 2013, 117, 633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVersLfK&md5=a60ed7bb5805681a0789ed9e7feac502CAS |

[14]  J. M. Krzeszczakowska, L. A. Malaspina, H.-B. Bürgi, Y.-S. Chen, C. B. Hübschle, B. Dittrich, M. Woińska, D. Jayatilaka, S. Grabowsky, Manuscript in preparation.

[15]  S. Grabowsky, D. Jayatilaka, S. Mebs, P. Luger, Chem. – Eur. J. 2010, 16, 12818.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyhur7E&md5=6a4893b8972ca3f003fadeefeb05d141CAS |

[16]  G. Frenking, S. Shaik, The Chemical Bond: Fundamental Aspects of Chemical Bonding 2014 (Wiley-VCH: New York, NY).

[17]  F. Weinhold, J. Comput. Chem. 2012, 33, 2363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFShu73I&md5=da8e5248c77e3c79ab4cb354d671e114CAS |

[18]  (a) R. F. W. Bader, Chem. Rev. 1991, 91, 893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFWgt7s%3D&md5=81cd1459b2f38f4a646a6c4389d6e0e5CAS |
         (b) R. F. W. Bader, Atoms in Molecules – A Quantum Theory 1995 (Clarendon Press: Oxford).

[19]  P. L. A. Popelier, Intermolecular Forces and Clusters I 2005 (Springer: Heidelberg).

[20]  S. Mebs, R. Kalinowski, S. Grabowsky, D. Förster, R. Kickbusch, E. Justus, W. Morgenroth, C. Paulmann, P. Luger, D. Gabel, D. Lentz, Inorg. Chem. 2011, 50, 90.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyitbbL&md5=42c8590a15b22e4f0f882e5411ea625eCAS |

[21]  R. F. Bader, J. Phys. Chem. A 1998, 102, 7314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlyhsLY%3D&md5=a1660d18a876971430a71e1e8883790cCAS |

[22]  R. F. Bader, A. Streitwieser, A. Neuhaus, K. E. Laidig, P. Speers, J. Am. Chem. Soc. 1996, 118, 4959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVGjt7s%3D&md5=54beb4744fec7bb818fe17d405f745bcCAS |

[23]  A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOitbw%3D&md5=6ba02dd32da4fa5d5840b5a6ee6a2e79CAS |

[24]  M. D. Gould, C. Taylor, S. K. Wolff, G. S. Chandler, D. Jayatilaka, Theor. Chem. Acc. 2008, 119, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFM%3D&md5=bf522d38c16ff308a047b2cbd591d1f1CAS |

[25]  M. Kohout, Int. J. Quantum Chem. 2004, 97, 651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFKltL8%3D&md5=53dfb501f2e742beda086115997b6239CAS |

[26]  W. Wu, P. Su, S. Shaik, P. C. Hiberty, Chem. Rev. 2011, 111, 7557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVegtL7L&md5=99e24f12fb7d13aad9ff0093b9c72940CAS |

[27]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision D. 01) 2009 (Gaussian, Inc.: Wallingford, CT).

[28]  T. A. Keith, AIMall (Version 13.05. 06) 2013 (TK Gristmill Software: Overland Park, KS).

[29]  E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVegurc%3D&md5=963d96eb368417be908e224a7c70b259CAS |

[30]  L. Song, Y. Mo, Q. Zhang, W. Wu, J. Comput. Chem. 2005, 26, 514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1yku7o%3D&md5=d45f1f9759fd60310521a0ba671b9148CAS |

[31]  M. Kohout, DGrid, Version 5.0 2017 (Dresden).

[32]  Bruker AXS Inc., APEX3 2017 (Bruker AXS: Karlsruhe).

[33]  G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  A. Volkov, P. Macchi, L. J. Farrugia, C. Gatti, P. R. Mallinson, T. Richter, T. Koritsanszky, XD 2006 (Version 5.42) 2006.

[35]  C. K. Johnson, Acta Crystallogr. A 1969, 25, 187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXjt1egtw%3D%3D&md5=f0942e9cdc664da0224cf5219c3fe9dfCAS |

[36]  D. Jayatilaka, D. J. Grimwood, Tonto: A Fortran-Based Object-Oriented System for Quantum Chemistry and Crystallography, in Computational Science – ICCS 2003, Part 4 (Eds P. M. A. Sloot, D. Abramson, A. V. Bogdanov, J. J. Dongarra, A. Y. Zomaya, Y. E. Gorbachev) 2003, pp. 142–151 (Springer Verlag: New York, NY). The program can be obtained free of charge from https://github.com/dylan-jayatilaka/tonto (verified 16 January 2018).

[37]  (a) D. Jayatilaka, B. Dittrich, Acta Crystallogr. A 2008, 64, 383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslKhs7s%3D&md5=b36779dfb9593176f9bc0a80e41ab093CAS |
      (b) S. C. Capelli, H.-B. Bürgi, B. Dittrich, S. Grabowsky, D. Jayatilaka, IUCrJ 2014, 1, 361.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  (a) D. Jayatilaka, Phys. Rev. Lett. 1998, 80, 798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVymtQ%3D%3D&md5=5042066a0248b7b685c32dd9b9a7ab0fCAS |
      (b) D. Jayatilaka, D. J. Grimwood, Acta Crystallogr. Sect. A 2001, 57, 76.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  T. L. Cottrell, The Strength of Chemical Bonds 1958 (Butterworth’s Publications Ltd: London).

[40]  (a) C. Gatti, R. Bianchi, R. Destro, F. Merati, J. Mol. Struct. THEOCHEM 1992, 255, 409.
         | Crossref | GoogleScholarGoogle Scholar |
         (b) B. Engels, T. C. Schmidt, C. Gatti, T. Schirmeister, R. F. Fink, in Electron Density and Chemical Bonding II (Ed. D. Stalke) 2011, Structure and Bonding, Vol. 147, pp. 47–97 (Springer: Berlin).

[41]  D. J. Grimwood, I. Bytheway, D. Jayatilaka, J. Comput. Chem. 2003, 24, 470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFWlsrc%3D&md5=33c9bfc641e25950eee42e9380250108CAS |

[42]  Although it occurs in many examples (e.g. (a) F. Kraus, N. Korber, Chem. – Eur. J. 2005, 11, 5945; (b) S. Grabowsky, P. Luger, J. Buschmann, T. Schneider, T. Schirmeister, A. N. Sobolev, D. Jayatilaka, Angew. Chem. Int. Ed. 2012, 51, 6776), there is no detailed discussion about this phenomenon in the literature. We also refer to private communications with Miroslav Kohout.