Anion Photoelectron Spectroscopy and High Level Ab Initio Calculations of the Halide–Nitric Oxide Dimer Complexes*
Kim M. L. Lapere A B , Allan J. McKinley A and Duncan Wild A CA Chemistry, School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Crawley, WA 6009, Australia.
B Current address: School of Chemistry, UNSW, Sydney, NSW 2052, Australia.
C Corresponding author. Email: duncan.wild@uwa.edu.au
Australian Journal of Chemistry 71(4) 265-271 https://doi.org/10.1071/CH17581
Submitted: 11 November 2017 Accepted: 6 January 2018 Published: 8 February 2018
Abstract
Anion photoelectron spectra are presented for gas phase complexes formed between halide anions and nitric oxide, X−⋯NO where X− = Cl−, Br−, and I−. Electron binding energies are experimentally determined to be 3.82, 3.51, and 3.17 eV. Results from CCSD(T)/aug-cc-pVTZ calculations are presented for the anion species, whereby a single minimum of Cs symmetry is predicted. Binding energies (D0) of 15.3, 13.3, and 11.7 kJ mol−1 are predicted from complete basis set limit extrapolation, and are found to be in line with previous experimental studies.
References
[1] B. Opoku-Agyeman, A. S. Case, J. H. Lehman, W. C. Lineberger, A. B. McCoy, J. Chem. Phys. 2014, 141, 084305.| Crossref | GoogleScholarGoogle Scholar |
[2] J. P. Martin, A. S. Case, Q. L. Gu, J. P. Darr, A. B. McCoy, W. C. Lineberger, J. Chem. Phys. 2013, 139, 064315.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. B. Kim, M. L. Weichman, D. M. Neumark, J. Am. Chem. Soc. 2014, 136, 7159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlKgu78%3D&md5=20772e014074a32f467a13b314d58216CAS |
[4] M. L. Weichman, J. B. Kim, D. M. Neumark, J. Chem. Phys. 2014, 140, 104305.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. D. Graham, A. M. Buytendyk, X. Zhang, E. L. Collins, B. Kiran, G. Gantefoer, B. W. Eichhorn, G. L. Gutsev, S. Behera, P. Jena, K. H. Bowen, J. Phys. Chem. A 2014, 118, 8158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFeqt74%3D&md5=6bf76376cbbc19820cae3a6fff6ff08bCAS |
[6] A. Buytendyk, J. Graham, H. P. Wang, X. X. Zhang, E. Collins, Y. J. Ko, G. Gantefoer, B. Eichhorn, A. Regmi, B. Kiran, K. H. Bowen, Int. J. Mass Spectrom. 2014, 365–366, 140.
| Crossref | GoogleScholarGoogle Scholar |
[7] I. A. Popov, W. L. Li, Z. A. Piazza, A. I. Boldyrev, L. S. Wang, J. Phys. Chem. A 2014, 118, 8098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVOrsg%3D%3D&md5=e08e5e3943780a0261e8b2718fac5222CAS |
[8] Y. Erdogdu, T. Jian, G. V. Lopez, W. L. Li, L. S. Wang, Chem. Phys. Lett. 2014, 610–611, 23.
| Crossref | GoogleScholarGoogle Scholar |
[9] J. A. A. Ketelaar, K. J. Palmer, J. Am. Chem. Soc. 1937, 59, 2629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA1cXhtVygug%3D%3D&md5=d8f14ec17376cc0d4caf04d8ed481896CAS |
[10] C. F. Goodeve, S. Katz, Proc. R. Soc. A 1939, 172, 432.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA1MXlvFWkuw%3D%3D&md5=828770a0c68c0f90ce6829da546d4d00CAS |
[11] E. A. Jones, P.J.H. Woltz, J. Chem. Phys. 1950, 18, 1516.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXotVeg&md5=c70699b43d3a198c9bf670b329c2a9c2CAS |
[12] W. G. Burns, H. J. Bernstein, J. Chem. Phys. 1950, 18, 1669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXjsFWrug%3D%3D&md5=61d07411e9de034088a8b3364c57bd60CAS |
[13] T. L. Weatherly, Q. Williams, J. Chem. Phys. 1956, 25, 717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXhtFGgtg%3D%3D&md5=800ba82911ea1cfb5992e987068b6cd2CAS |
[14] D. J. Millen, J. Pannell, J. Chem. Soc. 1961, 1322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXptFCluw%3D%3D&md5=a37af0c21a2d60e28b8283bf5ff2cfdbCAS |
[15] G. Porter, Z. G. Szabo, M. G. Townsend, Proc. R. Soc. A 1962, 270, 493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXlvV2q&md5=83db65b66ef295c5f5997f6dcd1053a0CAS |
[16] L. H. Jones, L. B. Asprey, R. R. Ryan, J. Chem. Phys. 1967, 47, 3371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhslahtA%3D%3D&md5=658e5dae4e6a94e915cba74eee0de9fdCAS |
[17] L. H. Jones, R. R. Ryan, L. B. Asprey, J. Chem. Phys. 1968, 49, 581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkvVWqsLc%3D&md5=ebb24a4da89b7f048089bae450fb79f5CAS |
[18] J. Laane, L. H. Jones, R. R. Ryan, L. B. Asprey, J. Mol. Spectrosc. 1969, 30, 485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktVyjt7o%3D&md5=ec8b0584aee62d2b4c7eaccc8c9c40f7CAS |
[19] K. S. Buckton, A. C. Legon, D. J. Millen, Trans. Faraday Soc. 1969, 65, 1975.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXkslGqt78%3D&md5=c85e614f691d16167d5ad336578e4d87CAS |
[20] D. J. Millen, D. Mitra, Trans. Faraday Soc. 1970, 66, 2414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltVequr0%3D&md5=0c2925b576d7498c998e5252b59e81d3CAS |
[21] H. van den Bergh, J. Troe, J. Chem. Phys. 1976, 64, 736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhtFahsrg%3D&md5=861c5c80df8ef95a763059f83cbf12dcCAS |
[22] M. Feuerhahn, R. Minkwitz, Z. Anorg. Allg. Chem. 1977, 428, 68.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhtFCktr8%3D&md5=5d1b6e36ca7f8b7366a50508d3936523CAS |
[23] E. Forte, H. Hippler, H. Van Den Bergh, Int. J. Chem. Kinet. 1981, 13, 1227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XisFejsg%3D%3D&md5=7c7044e7b811237e698bd479b7ee6918CAS |
[24] G. Cazzoli, C. Degli Esposti, P. Palmieri, G. Simeone, J. Mol. Spectrosc. 1983, 97, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmt1Cgsw%3D%3D&md5=d19afddecaebdebb0e207e0b3430d08bCAS |
[25] M. E. Jacox, J. Phys. Chem. 1983, 87, 4940.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtVGjur4%3D&md5=8911ef2203b63f5ec21924d8bca0dbfbCAS |
[26] I. Barnes, K. H. Becker, J. Starcke, J. Phys. Chem. 1991, 95, 9736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXms1Kms7o%3D&md5=54faea365fcc851bf6b5ce17d78bf45aCAS |
[27] J. L. Mackey, B. R. Johnson, C. Kittrell, L. D. Le, J. L. Kinsey, J. Chem. Phys. 2001, 114, 6631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisV2gtb0%3D&md5=a5b5a54942db63962ca6d5ecd9dfda29CAS |
[28] D. C. Frost, S. T. Lee, C. A. McDowell, N.P.C. Westwood, J. Electron Spectrosc. Relat. Phenom. 1975, 7, 331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlvF2qurc%3D&md5=80ab22d8a67ae71ff1f4c3271fbbc427CAS |
[29] M. I. Abbas, J. M. Dyke, A. Morris, J. Chem. Soc., Faraday Trans. II 1976, 72, 814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhslWrur0%3D&md5=4f7ce67282ba536e504ab54e4cedc9e1CAS |
[30] D. S. Alderdice, R. N. Dixon, J. Chem. Soc., Faraday Trans. II 1977, 73, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhvVSht7o%3D&md5=4aace58dd0709e04bc19d9ccfca1a7d1CAS |
[31] H. Bergmann, S. Elbel, R. Demuth, J. Chem. Soc., Dalton Trans. 1977, 5, 401.
| Crossref | GoogleScholarGoogle Scholar |
[32] Å. Støgård, Chem. Phys. Lett. 1976, 40, 429.
| Crossref | GoogleScholarGoogle Scholar |
[33] T. A. Ford, S. F. Agnew, B. I. Swanson, J. Mol. Struct. 1993, 297, 255.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsFymtrw%3D&md5=99cd4c39ed318eca36ad098a99d44e26CAS |
[34] C. Meredith, G. E. Quelch, H. F. Schaefer, J. Chem. Phys. 1992, 96, 480.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtFers74%3D&md5=e6cee264f5462c2eae217f1cfca96f05CAS |
[35] M. D. Burtzoff, L. Peter, D. Y. Zhang, J. Mol. Struct. THEOCHEM 2000, 532, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotleqsb8%3D&md5=a4a0595c769a6ca096a86ea50077536bCAS |
[36] H. U. Suter, J. R. Huber, M. v. Dirke, A. Untch, R. Schinke, J. Chem. Phys. 1992, 96, 6727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktlKgs7s%3D&md5=6620f4d0bc8107c251f45be21db66e88CAS |
[37] P. J. Carmichael, B. G. Gowenlock, C.A.F. Johnson, J. Chem. Soc., Perkin Trans. 2 1973, 14, 1853.
| Crossref | GoogleScholarGoogle Scholar |
[38] S. C. Bhatia, J. L. Hall, J. Chem. Phys. 1985, 82, 1991.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhslarsbg%3D&md5=80f6659f8c57c194f4d7c5219fc86cffCAS |
[39] C. Meredith, R. D. Davy, H. F. Schaefer, J. Chem. Phys. 1990, 93, 1215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt1Wiurw%3D&md5=7d053dec9cbf4eb3079e72ba5a21f47aCAS |
[40] K. Hiraoka, M. Nasu, D. Oomori, A. Minamitsu, J. Chem. Phys. 1996, 105, 9068.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntF2iu78%3D&md5=70f7dd2092e2a9bec6dc3171fa68c3deCAS |
[41] K. Hiraoka, T. Iino, D. Eguchi, T. Mizuno, S. Yamabe, Chem. Phys. Lett. 2000, 323, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVaksb0%3D&md5=b6d854c6471d9885d07562b9f521eea9CAS |
[42] T. Matsubara, K. Hirao, J. Phys. Chem. A 2003, 107, 2505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGht70%3D&md5=33461f00b2b57c154a35fe6a1c9fd54dCAS |
[43] J. H. Hendricks, H. L. de Clercq, C. B. Freidhoff, S. T. Arnold, J. G. Eaton, C. Fancher, S. A. Lyapustina, J. T. Snodgrass, K. H. Bowen, J. Chem. Phys. 2002, 116, 7926.
[44] K. M. Lapere, R. J. LaMacchia, L. H. Quak, A. J. McKinley, D. A. Wild, Chem. Phys. Lett. 2011, 504, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVOjsLw%3D&md5=a981bcefb861c6c9831c11c097139bf2CAS |
[45] K. M. Lapere, Anion Photoelectron Spectroscopy of Halide Complexes and Clusters 2014, PhD thesis, The University of Western Australia.
[46] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=db978a0efa6c86f33a9fa88a9c640768CAS |
[47] D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlans7Y%3D&md5=5c2913c93fe5f65f3496a4113d37bf56CAS |
[48] T. H. Dunning, K. A. Peterson, A. K. Wilson, J. Chem. Phys. 2001, 114, 9244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFWiurk%3D&md5=7c19297fac6b44a6bb769f876aff249dCAS |
[49] K. A. Peterson, D. Figgern, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 2003, 119, 11113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFyms7w%3D&md5=b854009560404af17bf441f84ef58a97CAS |
[50] K. A. Peterson, B. C. Shepler, D. Figgen, H. Stoll, J. Phys. Chem. A 2006, 110, 13877.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12itb3F&md5=2c13bbc62fca3d0cf40333a77a1604b9CAS |
[51] A. Karton, J. M. Martin, J. Chem. Phys. 2012, 136, 124114.
| Crossref | GoogleScholarGoogle Scholar |
[52] CFOUR, a quantum chemical program package written by J. F. Stanton, J. Gauss, L. Cheng, M. E. Harding, D. A. Matthews, P. G. Szalay with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, O. Christiansen, F. Engel, R. Faber, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, F. Lipparini, T. Metzroth, L. A. Mück, D. P. O’Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts and the integral packages MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de.
[53] A. D. Buckingham, Adv. Chem. Phys. 1967, 12, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXovF2gsw%3D%3D&md5=d9ad34736e7b29076b44fecce9387df4CAS |
[54] P. J. Bruna, F. Grein, J. Chem. Phys. 2007, 127, 074107.
| Crossref | GoogleScholarGoogle Scholar |
[55] W. T. Rawlins, J. C. Person, M. E. Fraser, W.A.M. Blumberg, J. Chem. Phys. 1998, 109, 3409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFCmsrg%3D&md5=17d19ec06aa10ab17b22efbd2f9e24c9CAS |
[56] M. Medved, M. Urban, V. Kellö, G.H.F. Diercksen, J. Mol. Struct. THEOCHEM 2001, 547, 219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVajs7k%3D&md5=fcd2b25ec0f882b6486120b04b56bfb4CAS |
[57] L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFKkurg%3D&md5=0c0b9e3645e390b4b62d71b2500e1d16CAS |
[58] J. E. Del Bene, H. D. Mettee, M. J. Frisch, B. T. Luke, J. A. Pople, J. Phys. Chem. 1983, 87, 3279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkslOku7g%3D&md5=5d1ec4d3ba97a40d7a37e1aa4c806ff4CAS |
[59] National Institute of Standards and Technology, NIST Chemistry WebBook, NIST Standard Reference Database Number 69 2002 (NIST: Gaithersburg, MD).
[60] National Institute of Standards and Technology, Handbook of Basic Atomic Spectroscopic Data, NIST Standard Reference Database 108 2003 (NIST: Gaithersburg, MD).
[61] P. D. Watson, H. Yong, K. M. Lapere, M. Kettner, A. J. McKinley, D. A. Wild, Chem. Phys. Lett. 2016, 654, 119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XotFals7c%3D&md5=a9f8b6301be1dee988805eb989cb1389CAS |
[62] K. M. Lapere, M. Kettner, P. D. Watson, A. J. McKinley, D. A. Wild, J. Phys. Chem. A 2015, 119, 9722.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOrsLzM&md5=7c66bbfab5365543f99e90850537f37eCAS |
[63] D. A. R. Beckham, S. Conran, K. M. Lapere, M. Kettner, A. J. McKinley, D. A. Wild, Chem. Phys. Lett. 2015, 619, 241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVKqt7%2FM&md5=576655ab2fac7fb7446aa031678af6a0CAS |
[64] K. M. Lapere, R. J. LaMacchia, L. H. Quak, M. Kettner, S. G. Dale, A. J. McKinley, D. A. Wild, Aust. J. Chem. 2012, 65, 457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1yrsbs%3D&md5=51ec19f70a106a1be2ecf556f06ece96CAS |
[65] K. M. Lapere, R. J. LaMacchia, L. H. Quak, M. Kettner, S. G. Dale, A. J. McKinley, D. A. Wild, J. Phys. Chem. A 2012, 116, 3577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvFKktrk%3D&md5=e04d1238e881b9514c81e0ec845ded96CAS |