Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Liquid-Crystalline Properties of Thioesters

Anne Ugleholdt Petersen A B , Martyn Jevric A , Richard J. Mandle B , Martin Drøhse Kilde A , Frederik P. Jørgensen A , John W. Goodby B and Mogens Brøndsted Nielsen A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.

B Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.

C Corresponding author. Email: mbn@chem.ku.dk

Australian Journal of Chemistry 71(6) 422-434 https://doi.org/10.1071/CH17540
Submitted: 10 October 2017  Accepted: 6 April 2018   Published: 8 May 2018

Abstract

An extension of a new method for forming thioesters with mesomorphic properties has been described, whereby the treatment of aryl tert-butylthioethers with long-chain acid chlorides in the presence of bismuth triflate afforded simple derivatives in good yields. This method in the case of 1-cyanoazulenes was, however, complicated by a competitive Friedel–Crafts-type acylation side reaction at the 3-position. Long-chain derivatives of cyanobiphenyl attached through a thioester linkage exhibited mesophases comparable with their ester analogues. The use of shorter chains to decorate the cyanobiphenyl moiety did not produce mesophasic behaviour, unlike their ester analogues. The cyanobiphenyl derivatives showing mesophasic behaviour were studied by small-angle X-ray diffraction, showing alignment for molecules possessing a smectic A phase. It was found that the layer spacing in the smectic A phase was ~1.5 times the length of the molecule, owing to antiparallel pairing arising from π-stacking between neighbouring units. Calculations suggest these derivatives should exhibit large dielectric anisotropy; however, instability made an exact value difficult to determine. For potential use in a liquid crystal display (LCD), the thioester holds some promise, although this may be limited by the relative stability of the thioester functionality.


References

[1]  (a) M. J. S. Dewar, R. M. Riddle, J. Am. Chem. Soc. 1975, 97, 6658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXmtFWmt74%3D&md5=43cd39bbc8857478fa453089b25cab48CAS |
      (b) M. J. S. Dewar, A. C. Griffin, J. Chem. Soc., Perkin Trans. 2 1976, 710.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. E. Neubert, B. Ziemincka-Merchant, M. R. Jirousek, S. J. Laskos, D. Leonhardt, R. Sharma, Mol. Cryst. Liq. Cryst. 1988, 154, 209.
      (d) M. E. Neubert, R. E. Cline, M. J. Zawaskis, P. J. Wildman, A. Ekachai, Mol. Cryst. Liq. Cryst. 1981, 76, 43.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. M. Reynolds, C. Maze, E. Oppenheim, Mol. Cryst. Liq. Cryst. 1976, 36, 41.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Jevric, A. U. Petersen, M. Mansø, A. Ø. Madsen, M. B. Nielsen, Eur. J. Org. Chem. 2015, 4675.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpvFWgtrs%3D&md5=a5cba7caa4e10bfe670b8bb3855f2135CAS |

[3]  F. P. Jørgensen, J. F. Petersen, C. L. Andersen, A. B. Skov, M. Jevric, O. Hammerich, M. B. Nielsen, Eur. J. Org. Chem. 2017, 1253.

[4]  D. A. Dunmur, Liq. Cryst. 2015, 42, 678.
         | 1:CAS:528:DC%2BC2MXlsVOmu7o%3D&md5=fa5a69d9da1bfe717f898563b9cd3a81CAS |

[5]  B. Grant, N. J. Clecak, R. J. Cox, Mol. Cryst. Liq. Cryst. 1979, 51, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltFGlsro%3D&md5=ea25f3997fc4ef62e566eb8fc5c4b9d3CAS |

[6]  Y. Ozcayir, J. Asrar, A. Blumstein, Mol. Cryst. Liq. Cryst. 1984, 110, 263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXls1Wltr8%3D&md5=c8a27d469de5a88ea52b8aa1dd6fea58CAS |

[7]  A. U. Petersen, M. Jevric, R. J. Mandle, M. T. Sims, J. N. Moore, S. J. Cowling, J. W. Goodby, M. B. Nielsen, Chem. – Eur. J. 2017, 23, 5090.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXltVWiurc%3D&md5=ae8be90ae44f4ed3923716662afa93feCAS |

[8]  G. Nöll, J. Daub, M. Lutz, K. Rurack, J. Org. Chem. 2011, 76, 4859.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  T. Ollevier, Org. Biomol. Chem. 2013, 11, 2740.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltl2iu70%3D&md5=2a6343b4eca3fd5dda832a8ef6992527CAS |

[10]  M. Wilsdorf, D. Leichnitz, H.-U. Reissig, Org. Lett. 2013, 15, 2494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKqu74%3D&md5=d64917322e0c14471c884b0abb53ae42CAS |

[11]  S. Répichet, A. Zwick, L. Vendier, C. Le Roux, J. Dubac, Tetrahedron Lett. 2002, 43, 993.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) A. J. Leadbetter, J. C. Frost, J. P. Gaughan, A. Mosley, J. Phys. France 1979, 40, 375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhvFGrsLg%3D&md5=3a42f1219f7ac92bbbba4b3093d2c04dCAS |
      (b) R. J. Mandle, S. J. Cowling, I. Sage, M. E. Colclough, J. W. Goodby, J. Phys. Chem. B 2015, 119, 3273.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  H. Scherrer, A. Boller, Liquid Crystalline Biphenyls, US Patent 3952046 1976.

[14]  J. Dubois, A. Zann, J. Phys. Colloques 1976, 37, C3-35.

[15]  D. Coates, G. W. Gray, Mol. Cryst. Liq. Cryst. 1976, 37, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhsFGjt7w%3D&md5=30d786b1f0a130e3a19dadf33e00fc54CAS |

[16]  D. M. Gavrilovic, Novel Liquid Crystal Electro-Optic Devices, US Patent 3951846 1976.

[17]  R. J. Mandle, S. J. Cowling, J. W. Goodby, Phys. Chem. Chem. Phys. 2017, 19, 11429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlvFylurg%3D&md5=41246e3e7820989b739e6868e8814abaCAS |

[18]  A. de Vries, J. Mol. Liq. 1986, 31, 193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhvFOiu7s%3D&md5=b8f717c4447500aa0e6ac3ec318ec839CAS |

[19]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision e.01 2016 (Gaussian, Inc.: Wallingford, CT).

[20]  (a) B. Ringstrand, P. Kaszynski, A. Januszo, V. G. Young, J. Mater. Chem. 2009, 19, 9204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSgtrjI&md5=a2a5883e59ab129de599aefdd366d0baCAS |
      (b) Z. Ran, H. Jun, P. Zeng-Hui, X. Li, Chin. Phys. B 2009, 18, 2885.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Kaszynski, A. Januszko, K. L. Glab, J. Phys. Chem. B 2014, 118, 2238.
      (d) R. J. Mandle, J. W. Goodby, Liq. Cryst. 2017, 44, 656.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  A. Bogi, S. Faetti, Liq. Cryst. 2001, 28, 729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlSgsrY%3D&md5=42f3abc9d58fd60aada6fe4b61e041b5CAS |

[22]  (a) R. J. Mandle, E. J. Davis, C.-C. A. Voll, D. J. Lewis, S. J. Cowling, J. W. Goodby, J. Mater. Chem. C 2015, 3, 2380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOks7Y%3D&md5=60ebbae17848b132441bc92b60728cf4CAS |
      (b) R. J. Mandle, E. J. Davis, J. P. Sarju, N. Stock, M. S. Cooke, S. A. Lobato, S. J. Cowling, J. W. Goodby, J. Mater. Chem. C 2015, 3, 4333.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  X. Zeng, C. Wang, A. S. Batsanov, M. R. Bryce, J. Gigon, B. Urasinska-Wojcik, G. J. Ashwell, J. Org. Chem. 2010, 75, 130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWhsLzJ&md5=f1b02e2a9e5460e9001597dc96b807cbCAS |