Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Ring-Opening Polymerization Reactions of ε-Caprolactone and Lactides Initiated by (Benzimidazolylmethyl)amino Magnesium(ii) Alkoxides

Ekemini D. Akpan A , Bernard Omondi A and Stephen O. Ojwach B C
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Physics, Westville Campus, University of KwaZulu–Natal, Private Bag X54001, Durban 4000, South Africa.

B School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu–Natal, Private Bag X01, Scottsville 3209, South Africa.

C Corresponding author. Email: ojwach@ukzn.ac.za

Australian Journal of Chemistry 71(5) 341-347 https://doi.org/10.1071/CH17506
Submitted: 15 September 2017  Accepted: 26 February 2018   Published: 16 March 2018

Abstract

Reactions of (benzimidazolylmethyl)amine ligands N-((1H-benzo[s]imidazol-2-yl)methyl)-2,6-dimethylaniline (L1), N-((1H-benzo[d]imidazol-2-yl)methyl)-2,6-diisopropylaniline (L2), and N-((1H-benzo[d]imidazol-2-yl)methyl)-2,4,6-trimethylaniline (L3) with Mg(nBu)2 in the presence of either benzyl alcohol (BnOH) or tert-butyl alcohol (t-BuOH) afforded the respective MgII alkoxides [Mg(L1)(OBn)]2 (1), [(Mg(L2)(OBn)]2 (2), [Mg(L3)(OBn)]2 (3), [Mg(L2)(t-BuO)]2 (4). Complexes 14 formed efficient catalysts for the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL), d,l-lactide (d,l-LA) and l-lactide (l-LA) at 110°C. The catalytic activities of these complexes in the ROP reactions were influenced by the steric effect of the ligands. Kinetic studies showed pseudo-first-order dependency on monomer. Polycaprolactone and polylactides of moderate weight-average molecular weights of 15285 and 5200 g mol−1 and fairly narrow polydispersity indexes from 1.24 to 1.58 were produced.


References

[1]  D. K. A. Barnes, F. Galgani, R. C. Thompson, M. Barlaz, Philos. Trans. R. Soc. B 2009, 364, 1985.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Skt7w%3D&md5=d0ce34477c81feb2bbab361812fd2554CAS |

[2]  J. H. Song, R. J. Murphy, R. Narayan, G. B. H. Davies, Philos. Trans. R. Soc. B 2009, 364, 2127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1SktL4%3D&md5=fbc5f50185c6565ecfa4491e65d66662CAS |

[3]  B. P. Mooney, Biochem. J. 2009, 418, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Ogu78%3D&md5=dd54e997457fa16af71313629c4edbbdCAS |

[4]  N. E. Kamber, W. Jeong, R. M. Waymouth, R. C. Pratt, B. G. G. Lohmeijer, J. L. Hedrick, Chem. Rev. 2007, 107, 5813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12gs7fK&md5=6cee4fb6a7f49fe557f6864799893e82CAS |

[5]  M. Labet, W. Thielemans, Chem. Soc. Rev. 2009, 38, 3484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVanurrJ&md5=5bc9faca58794c0e8ad39a145b2c036bCAS |

[6]  O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 2004, 104, 6147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVOlt7Y%3D&md5=7ffc9ed34273d70863ac196ca413e49eCAS |

[7]  C. K. Williams, Chem. Soc. Rev. 2007, 36, 1573.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVKitrc%3D&md5=3b9c307bab0fb7222a2b494e2ddf2e7fCAS |

[8]  M. H. Chisholm, M. Zhou, J. Mater. Chem. 2004, 14, 3081.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFGgs78%3D&md5=443e52b6069e0a229e125945e90c7a30CAS |

[9]  R. H. Platel, L. M. Hodgson, C. K. Williams, Polym. Rev. 2008, 48, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Kqtbk%3D&md5=1dd44beaf626194f7858da3546a5ea02CAS |

[10]  R. J. Wood, P. M. Suter, R. M. Russell, Am. J. Clin. Nutr. 1995, 62, 493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosF2mtrs%3D&md5=23bbe8cca9e584ba40770c6b091f232dCAS |

[11]  J. R. Turnlund, A. A. Betschart, M. Liebman, M. J. Kretsch, H. E. Sauberlich, Am. J. Clin. Nutr. 1992, 56, 905.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXnvF2jsg%3D%3D&md5=987a21b8222825f347b04b0a56ed3d10CAS |

[12]  D. J. Darensbourg, O. Karroonnirun, Inorg. Chem. 2010, 49, 2360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWltLc%3D&md5=0fff4a5fd6acb20c1c18232efc89613bCAS |

[13]  G. Labourdette, D. J. Lee, B. O. Patrick, M. B. Ezhova, P. Mehrkhodavandi, Organometallics 2009, 28, 1309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslCju7Y%3D&md5=90790db798efbf1cc6e834b891b6d3efCAS |

[14]  H.-J. Chuang, H.-L. Chen, J.-L. Ye, Z.-Y. Chen, P.-L. Huang, T.-T. Liao, T.-E. Tsai, C.-C. Lin, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1aqsbnF&md5=f2882e85195f6414d845151e7d1e2fc1CAS |

[15]  J. Wu, T.-L. Yu, C.-T. Chen, C.-C. Lin, Coord. Chem. Rev. 2006, 250, 602.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsF2hsbw%3D&md5=04d944a5285774049c74736989dffa0fCAS |

[16]  N. W. Attandoh, S. O. Ojwach, O. Q. Munro, Eur. J. Inorg. Chem. 2014, 3053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1Ggtbg%3D&md5=fd8d2b581b4f67b511e343de3206c006CAS |

[17]  S. Schmidt, S. Schulz, D. Bläser, R. Boese, M. Bolte, Organometallics 2010, 29, 6097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlClurnJ&md5=a1915c8d3e9b6513bd540f4ee648b7c2CAS |

[18]  C. M. Thomas, Chem. Soc. Rev. 2010, 39, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsr3E&md5=04778ba22712d2c58679d96ee6610172CAS |

[19]  S. O. Ojwach, T. T. Okemwa, N. W. Attandoh, B. Omondi, Dalton Trans. 2013, 10735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOrsr7M&md5=89c7cec80f1a17083382fc54a7d7e289CAS |

[20]  S. Collins, Coord. Chem. Rev. 2011, 255, 118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOnsrfM&md5=10843758b01c68b5bd5822c3eb652f1bCAS |

[21]  K. C. S. Achar, K. M. Hosamani, H. R. Seetharamareddy, Eur. J. Med. Chem. 2010, 45, 2048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs12qtLk%3D&md5=3d98d20adaca840b4518f21b6fa43454CAS |

[22]  M. M. Campos-Vallette, K. A. Figueroa, R. Latorre, V. Manriquez, G. Diaz, J. Costamagna, M. Otero, Vib. Spectrosc. 1992, 4, 77.
         | 1:CAS:528:DyaK3sXltFahsQ%3D%3D&md5=3a91579370343581dce4b8181812decfCAS |

[23]  P. Dubois, C. Jacobs, R. Jerome, P. Teyssie, Macromolecules 1991, 24, 2266.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvVKitr8%3D&md5=1cc3efd63dac7a51a76241dd0f20d203CAS |

[24]  J. L. Mata-Mata, J. A. Gutiérrez, M. A. Paz-Sandoval, A. R. Madrigal, A. Martínez-Richa, J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 6926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCnt77I&md5=d4b185e27673dc974207b2f602389cf9CAS |

[25]  B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2001, 123, 3229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVSgtrk%3D&md5=a7f5f59cb32a3a367096945133f93d47CAS |

[26]  L. R. Rieth, D. R. Moore, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2002, 124, 15239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFOls7Y%3D&md5=1b7ab7d34ec91fb373522c4846f5a3f3CAS |

[27]  M.-C. Chang, W.-Y. Lu, H.-Y. Chang, Y.-C. Lai, M. Y. Chiang, H.-Y. Chen, H.-Y. Chen, Inorg. Chem. 2015, 54, 11292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGjtbjP&md5=f21ba4df11428956f904b3ff81278a61CAS |

[28]  D. Appavoo, B. Omondi, I. A. Guzei, J. L. van Wyk, O. Zinyemba, J. Darkwa, Polyhedron 2014, 69, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWgsr4%3D&md5=79284046bcaaca9da56ea00e31043b0cCAS |

[29]  A. Duda, Macromolecules 1996, 29, 1399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XosVGmtQ%3D%3D&md5=de305715ab546adc13062a6a8f9c50d9CAS |

[30]  W.-L. Kong, Z.-X. Wang, Dalton Trans. 2014, 9126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVegur4%3D&md5=81b0188919419cc48df0a27a67a859faCAS |

[31]  M. J. Stanford, A. P. Dove, Chem. Soc. Rev. 2010, 39, 486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WltLw%3D&md5=63b9a1350889d379038132e3d02c85c8CAS |

[32]  N. W. Attandoh, S. O. Ojwach, Polymer 2016, 40, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFags77E&md5=397af32d30e857e4a812c0df2dfe3234CAS |

[33]  K. A. M. Thakur, R. T. Kean, M. T. Zell, B. E. Padden, E. J. Munson, J. Chem. Commun. 1998, 1913.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVCqu7g%3D&md5=e85ab962c47db739de1a4787f1b8c209CAS |

[34]  K. A. M. Thakur, R. T. Kean, E. S. Hall, M. A. Doscotch, E. J. Munson, Anal. Chem. 1997, 69, 4303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt12ms7o%3D&md5=cf29b6920cf3f50802345a156669389cCAS |

[35]  K. A. M. Thakur, R. T. Kean, E. S. Hall, J. J. Kolstad, T. A. Lindgren, M. A. Doscotch, J. I. Siepmann, E. J. Munson, Macromolecules 1997, 30, 2422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFyktrw%3D&md5=ed4b19594d4f23c3b7b3d961080f36cdCAS |

[36]  Y. Yang, H. Wang, H. Ma, Inorg. Chem. 2015, 54, 5839.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslylurs%3D&md5=8c22e818fb08fb855c5b7c42dd44b7cdCAS |

[37]  J.-C. Wu, B.-H. Huang, M.-L. Hsueh, S.-L. Lai, C.-C. Lin, Polymer 2005, 46, 9784.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWqtLjL&md5=8d1d26f653f624329bce716388d70568CAS |