Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structural Variations in the Complete Series of Lanthanoid Complexes of a Calix[4]arene Trisamide*

Gareth L. Nealon A B , Matthew J. McIldowie A , Brian W. Skelton C , Mauro Mocerino A , Massimiliano Massi A and Mark I. Ogden A C D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Curtin Institute of Functional Molecules and Interfaces, Curtin University, GPO Box U 1987, Perth, WA 6845, Australia.

B Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia.

C School of Molecular Sciences, M310, The University of Western Australia, Perth, WA 6009, Australia.

D Corresponding author. Email: m.ogden@curtin.edu.au

Australian Journal of Chemistry 73(6) 424-433 https://doi.org/10.1071/CH17484
Submitted: 23 August 2017  Accepted: 19 September 2017   Published: 20 October 2017

Abstract

Lanthanoid picrate (pic) complexes of 5,11,17,23-tetra-tert-butyl-25-hydroxy-26,27,28-tris(diethylcarbamoylmethoxy)calix[4]arene (LH) have been synthesised and structurally characterised, to complete this series for all lanthanoids (other than promethium). From cerium to lutetium, three structural types are observed: Type I, [Ln(L)(O,O′-pic)](pic), Ln = Ce–Dy; Type II, [Ln(L)(O-pic)](pic), Ln = Tb, Ho; Type III, [Ln(L)(HOEt)](pic)2, Ln = Er–Lu. With lanthanum, three different ten-coordinate complexes were characterised; [Ln(L)(O,O′-pic)(HOEt)](pic), [Ln(L)(O,O′-pic)(OH2)](pic), and [Ln(L)(O,O′-pic)(HOMe)](pic). The crystallisation of Type I and II observed for terbium shows that the stability of the different structures are sensitively poised at the transition points. Nevertheless, the structures show that the vacant space in the coordination sphere left by the trisamide L tends to reduce across the series as expected. It is occupied by a bidentate picrate anion and unidentate solvent molecule with lanthanum, a bidentate picrate anion for cerium to dysprosium (Type I), a unidentate picrate anion for terbium and holmium (Type II), and finally a unidentate solvent molecule from erbium to lutetium (Type III). The coordination number thus reduces from 10 to 8 across the series.


References

[1]  N. C. Martinez-Gomez, H. N. Vu, E. Skovran, Inorg. Chem. 2016, 55, 10083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVeksbfL&md5=78358028188922f9693380ded66e514eCAS |

[2]  S. V. Eliseeva, J. C. G. Bunzli, Chem. Soc. Rev. 2010, 39, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsrrK&md5=3013a5c73cae94f9f77e076aa0fd724aCAS |

[3]  D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlKlsLg%3D&md5=239a2833e58044b0aeb89d0088cde025CAS |

[4]  E. Debroye, T. N. Parac-Vogt, Chem. Soc. Rev. 2014, 43, 8178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFeitr3P&md5=a363f9e4ca5442d2f2f197acf1cfc80eCAS |

[5]  K. Binnemans, Chem. Rev. 2009, 109, 4283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptleltLk%3D&md5=eca67612863c8a50954000bd3803c2a8CAS |

[6]  S. A. Cotton, in Upconverting Nanomaterials: Perspectives, Synthesis, and Applications (Ed. C. Altavilla) 2016, pp. 1–18 (CRC Press: Boca Raton, FL).

[7]  S. N. Wang, R. Sun, X. S. Wang, Y. Z. Li, Y. Pan, J. F. Bai, M. Scheer, X. Z. You, CrystEngComm 2007, 9, 1051.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. J. Hutchings, F. Habib, R. J. Holmberg, I. Korobkov, M. Murugesu, Inorg. Chem. 2014, 53, 2102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVOqtL4%3D&md5=f51fc0274db1465a11a0b696fa38d888CAS |

[9]  J. C. G. Bunzli, J. Coord. Chem. 2014, 67, 3706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFynurrI&md5=351fd514830c1c09e6fe0bfe80c9d4d5CAS |

[10]  P. V. Bernhardt, B. M. Flanagan, M. J. Riley, Aust. J. Chem. 2001, 54, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Kiur4%3D&md5=b4febac1c0aa21a5ad5c0dfc0994717bCAS |

[11]  K. Matsumoto, K. Suzuki, T. Tsukuda, T. Tsubomura, Inorg. Chem. 2010, 49, 4717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFWrtrY%3D&md5=65a36d6f6d1b25554d2afa09a00a53ddCAS |

[12]  M. Seitz, A. G. Oliver, K. N. Raymond, J. Am. Chem. Soc. 2007, 129, 11153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1Whsbc%3D&md5=35fa9d657703efe9e27cdb468245f471CAS |

[13]  D. Aguila, L. A. Barrios, V. Velasco, L. Arnedo, N. Aliaga-Alcalde, M. Menelaou, S. J. Teat, O. Roubeau, F. Luis, G. Aromi, Chem. – Eur. J. 2013, 19, 5881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFWmtLY%3D&md5=59827754102dad154ff43719d5612a31CAS |

[14]  K. P. Carter, S. J. A. Pope, C. L. Cahill, CrystEngComm 2014, 16, 1873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFKmtrc%3D&md5=fc9762c20a2bccc6927fbadaaa0eb0b3CAS |

[15]  K. P. Carter, C. H. F. Zulato, C. L. Cahill, CrystEngComm 2014, 16, 10189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Ohu7fK&md5=5f3a7c3378c05802357c62f1e786eb2eCAS |

[16]  M. I. Saleh, E. Kusrini, H. K. Fun, B. M. Yamin, J. Organomet. Chem. 2008, 693, 2561.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFCisbY%3D&md5=792c49646f681905c5f31f07ca19eb1bCAS |

[17]  J. M. Harrowfield, W. M. Lu, B. W. Skelton, A. H. White, Aust. J. Chem. 1994, 47, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkt1ehs7Y%3D&md5=45391bf8bbb626a4287a8f88ab00649eCAS |

[18]  C. R. Driscoll, B. L. Reid, M. J. McIldowie, S. Muzzioli, G. L. Nealon, B. W. Skelton, S. Stagni, D. H. Brown, M. Massi, M. I. Ogden, Chem. Commun. 2011, 47, 3876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Snsbc%3D&md5=4d2b783eb10dd98475d24eadb256152eCAS |

[19]  B. W. Ennis, S. Muzzioli, B. L. Reid, D. M. D’Alessio, S. Stagni, D. H. Brown, M. I. Ogden, M. Massi, Dalton Trans. 2013, 42, 6894.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVCjurw%3D&md5=9211a6889f715b8109707977e016507aCAS |

[20]  P. D. Beer, M. G. B. Drew, P. B. Leeson, M. I. Ogden, J. Chem. Soc., Dalton Trans. 1995, 1273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt12ntrg%3D&md5=27774ce80b09977257cef2b3b5ca1304CAS |

[21]  C. R. Driscoll, B. W. Skelton, M. Massi, M. I. Ogden, Supramol. Chem. 2016, 28, 567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFOktrg%3D&md5=90a2d605bc63fc8a394c90c98e42937bCAS |

[22]  A. Arduini, E. Ghidini, A. Pochini, R. Ungaro, G. D. Andreetti, G. Calestani, F. Ugozzoli, J. Inclusion Phenom. 1988, 6, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVansrc%3D&md5=adeb744bdc55b9616995737f3264548eCAS |

[23]  A. Casnati, G. Cavallo, P. Metrangolo, G. Resnati, F. Ugozzoli, R. Ungaro, Chem. – Eur. J. 2009, 15, 7903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1yrt74%3D&md5=43fbe9dee9c662db0ec9e88036067816CAS |

[24]  A. Casnati, R. Liantonio, P. Metrangolo, G. Resnati, R. Ungaro, F. Ugozzoli, Angew. Chem. Int. Ed. 2006, 45, 1915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVyjtL8%3D&md5=aba7c32e3ca3fd651ceca1855f5dbc1eCAS |

[25]  A. Moser, G. P. A. Yap, C. Detellier, J. Chem. Soc., Dalton Trans. 2002, 428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Gnsbw%3D&md5=a3f4c99d310ce29fcd3b25b855790999CAS |

[26]  N. Muzet, G. Wipff, A. Casnati, L. Domiano, R. Ungaro, F. Ugozzoli, J. Chem. Soc., Perkin Trans. 2 1996, 1065.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFCqtb0%3D&md5=fce5937d65561ac4e7529e01d3f944d2CAS |

[27]  N. J. Wolf, E. M. Georgiev, A. T. Yordanov, B. R. Whittlesey, H. F. Koch, D. M. Roundhill, Polyhedron 1999, 18, 885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt12mtLc%3D&md5=5a4a0b4d136d5712fc40b74dde91bbd1CAS |

[28]  G. L. Nealon, M. Mocerino, M. I. Ogden, B. W. Skelton, J. Incl. Phenom. Macrocycl. Chem. 2009, 65, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCisbvJ&md5=8070c31d00383f05f7773a5a611d7bb3CAS |

[29]  M. I. Ogden, B. W. Skelton, A. H. White, C. R. Chim. 2005, 8, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlOgtL4%3D&md5=a23ea2fe3d8956d0ea032a7c426f29f2CAS |

[30]  P. D. Beer, M. G. B. Drew, A. Grieve, M. I. Ogden, J. Chem. Soc., Dalton Trans. 1995, 3455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptlSgsr0%3D&md5=c46f68fc5930e6c54d8fbcf59c39191dCAS |

[31]  P. D. Beer, M. G. B. Drew, P. B. Leeson, M. I. Ogden, Inorg. Chim. Acta 1996, 246, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvF2rtr0%3D&md5=da82a3e91a0f50f27856b76fe4f1a831CAS |

[32]  M. I. Ogden, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 2001, 3073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFaksLs%3D&md5=006a00a179b987fd48919c5342800063CAS |

[33]  G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |