Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Studies on Orpiment (As2S3) Quantum Dots and their Self-Assemblies

Jinzhu Wu A C , Yaxiu Feng A , Haishu Lin B and Paul C. Ho B
+ Author Affiliations
- Author Affiliations

A Department of Materials Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Da Zhi Street, Harbin 150001, China.

B Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Republic of Singapore.

C Corresponding author. Email: wujinzhu@hit.edu.cn

Australian Journal of Chemistry 70(10) 1093-1098 https://doi.org/10.1071/CH17194
Submitted: 7 April 2017  Accepted: 9 May 2017   Published: 30 May 2017

Abstract

The natural mineral orpiment (As2S3) has long been used in traditional medicines for various diseases, although it is poorly soluble and has resulting low bioavailability. In this study, orpiment quantum dots (QDs) belonging to rare V–VI binary QDs were first synthesised through top-down and bottom-up routes, in which a mixture of ethanolamine and triethanolamine was used as a coordinating solvent. The as-synthesised orpiment QDs have a narrow size distribution, superior solubility, strong blue photoluminescence emission, and good stability. Preliminary in vitro cytotoxicity studies show that orpiment QDs are less cytotoxic for human normal dermal fibroblast cells but more potent against murine melanoma B16 cells through induction of apoptosis. Moreover, self-assemblies of orpiment QDs were fabricated through destroying the protective surface ligand layer surrounding the inner orpiment cores by addition of an acid. The underlying driving force is probably competitive reactions between the surface amine ligand and the introduced acid, leading to the exposure of the bare inner orpiment cores with high surface energy.


References

[1]  G. V. Gibbs, A. F. Wallace, R. Zallen, R. T. Downs, N. L. Ross, D. F. Cox, K. M. Rosso, J. Phys. Chem. A 2010, 114, 6550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1ShtLw%3D&md5=9c675955c5ac68509c25999643f57ce6CAS |

[2]  R. Zallen, High Press. Res. 2004, 24, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksleru7g%3D&md5=e1aa844fc793f9b3339a136e0738f3a3CAS |

[3]  S. K. Bergstrom, E. Gillan, J. J. Quinn, A. J. Altman, J. Pediatr. Hematol. Oncol. 1998, 20, 545.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2Fnt1Cqtw%3D%3D&md5=c47789d016f0f76285fef9139ac3289eCAS |

[4]  M. Lin, Z. Wang, D. Zhang, J. Nanosci. Nanotechnol. 2007, 7, 490.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVyhtbw%3D&md5=fbda72e487f57b8772b71cff5f356720CAS |

[5]  H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawendi, J. Am. Chem. Soc. 2000, 122, 12142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFymtLs%3D&md5=1d11e035d5b6f45f7336666273c96149CAS |

[6]  I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Cit7k%3D&md5=0f7aa96fd2d62c95cd3f1ff7575bf7fdCAS |

[7]  W. C. W. Chan, S. M. Nie, Science 1998, 281, 2016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlKnsrk%3D&md5=1ca2bca1bd23401ec79faa310a93f6dbCAS |

[8]  S. Pedetti, B. Nadal, E. Lhuillier, B. Mahler, C. Bouet, B. Abécassis, X. Xu, B. Dubertret, Chem. Mater. 2013, 25, 2455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVKmu7o%3D&md5=a46825bc548f81111bbb7820b39020d8CAS |

[9]  O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, M. G. Bawendi, Nat. Mater. 2013, 12, 445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSmsr0%3D&md5=505d5db6667e6c03f82ca4e983e39952CAS |

[10]  W. Sukkabot, Physica E 2014, 63, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1OqtrfF&md5=046c855b4f31744ef99a5b288430697aCAS |

[11]  X. Yan, X. Zhang, J. S. Li, J. G. Cui, X. M. Ren, J. Appl. Phys. 2014, 116, 214304.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J. Z. Wang, M. Lin, T. Y. Zhang, Y. L. Yan, P. C. Ho, Q.-H. Xu, K. P. Loh, J. Am. Chem. Soc. 2008, 130, 11596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1KmsLo%3D&md5=bdd2fbf67b22b3d7d3374b6b106ff4bbCAS |

[13]  J. Z. Wang, K. P. Loh, Z. Wang, Y. L. Yan, Y. L. Zhong, Q.-H. Xu, P. C. Ho, Angew. Chem. Int. Ed. 2009, 48, 6282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFyhtLo%3D&md5=d76c5ad24df3711ae1a20b7ecc9f2a0cCAS |

[14]  J. Z. Wu, G. Chen, Y. B. Shao, J. Liu, Y. C. Sun, H. S. Lin, P. C. Ho, Nano 2016, 11, 1650005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjslOrt7g%3D&md5=9db1d455ce47f04364b49e2a70996028CAS |

[15]  R. S. Liu, H. R. Li, K. J. Dong, Z. Y. Hou, Z. A. Tian, P. Peng, A. B. Yu, J. Non-Cryst. Solids 2009, 355, 541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVKisrk%3D&md5=019525c26fc2c71b018298a26893b22cCAS |

[16]  Y. Li, G. Gubbiotti, F. Casoli, F. J. T. Goncalves, S. A. Morley, M. C. Rosamond, E. H. Linfield, C. H. Marrows, S. McVitie, R. L. Stamps, J. Phys. D: Appl. Phys. 2017, 50, 015003.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. Pfeiffer, K. Lindfors, H. Y. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, M. Lippitz, Nano Lett. 2014, 14, 197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFejt7vK&md5=fede290ac1f31a096ebd6932ec9d331dCAS |

[18]  D. Deng, L. Z. Qu, Y. Li, Y. Q. Gu, Langmuir 2013, 29, 10907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Wju7%2FL&md5=7103b9fc0273157a8f4ebfc7cd98c6b1CAS |

[19]  X. G. Peng, J. Thessing, Semiconductor Nanocrystals and Silicate Nanoparticles 2005 (Springer: Berlin).

[20]  A. M. Smith, H. W. Duan, M. N. Rhyner, G. Ruan, S. M. Nie, Phys. Chem. Chem. Phys. 2006, 8, 3895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlOisr0%3D&md5=97c57e79fa9546f4b4724f16047dd833CAS |

[21]  A. M. Bode, Z. G. Dong, Crit. Rev. Oncol. Hematol. 2002, 42, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  T. Seo, Y. Urasaki, H. Takemura, T. Ueda, Anticancer Res. 2005, 25, 991.
         | 1:CAS:528:DC%2BD2MXkt1Ggtbs%3D&md5=91031bb6ff583d385b04e70e3aa37648CAS |

[23]  M. R. Alison, C. E. Sarraf, Hum. Exp. Toxicol. 1995, 14, 234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1ers7Y%3D&md5=aa176924c95ea489d65db586e82227b5CAS |

[24]  J. M. Yao, B. Zhang, K. Yin, L. Y. Yang, J. Hou, Q. S. Lu, Opt. Express 2016, 24, 14717.
         | Crossref | GoogleScholarGoogle Scholar |