Transformation of Cadmium Tetracyanoquinodimethane (TCNQ) into a Cadmium Terephthalate Metal–Organic Framework
Manzar Sohail A B , Farooq Ahmad Kiani C D , Vedapriya Pandarinathan E , Safyan Akram Khan A , Damien J. Carter E , Roland De Marco B E F H and Alan M. Bond GA Center of Excellence for Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31260, Saudi Arabia.
B Faculty of Science, Health and Education, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Qld 4556, Australia.
C Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld-368, D-69120 Heidelberg, Germany.
D Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan.
E Nanochemistry Research Institute, Department of Chemistry, Curtin University, Perth, WA 6845, Australia.
F School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
G School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
H Corresponding author. Email: rdemarc1@usc.edu.au
Australian Journal of Chemistry 70(9) 973-978 https://doi.org/10.1071/CH17187
Submitted: 7 April 2017 Accepted: 26 May 2017 Published: 21 June 2017
Abstract
The transformation of cadmium 7,7,8,8-tetracyanoquinodimethane (TCNQ) into a cadmium terephthalate co-ordination polymer is reported, with the chemistry of this material elucidated using elemental analysis, X-ray photoelectron spectroscopy and synchrotron radiation single-crystal X-ray diffraction. A heptacoordinated CdII linear coordination polymer catena-poly[triaqua-(μ2-benzene-1,4-dicarboxylato-κO,O′)cadmium(ii)]hydrate (1) was isolated while attempting to recrystallize Cd(TCNQ)2. Density functional theory calculations for the oxidation of benzylic carbon attached to the cyano group provided evidence that the reaction pathway proposed herein is highly exergonic and thermodynamically plausible. This structure showed a distorted pentagonal bipyramidal geometry together with a symmetrical mononuclear unit in which each CdII ion is doubly bridged by a dicarboxylato anion. Owing to the softness and minute size of these crystals, this structure had to be elucidated using synchrotron radiation X-ray crystallography.
References
[1] (a) E. Katsoulakou, K. F. Konidaris, C. P. Raptopoulou, V. Psyharis, E. Manessi-Zoupa, S. P. Perlepes, Bioinorg. Chem. Appl. 2010, 2010, 1.| Crossref | GoogleScholarGoogle Scholar |
(b) S. Sen, M. Kumar Saha, P. Kundu, S. Mitra, C. Kruger, J. Bruckmann, Inorg. Chim. Acta 1999, 288, 118.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) J.-C. Dai, X.-T. Wu, Z.-Y. Fu, C.-P. Cui, S.-M. Hu, W.-X. Du, L.-M. Wu, H.-H. Zhang, R.-Q. Sun, Inorg. Chem. 2002, 41, 1391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlCmt7o%3D&md5=b49ad3d47f8ef74199a016196f25aa60CAS |
(b) D. Dang, J. Sun, Y. Bai, H. Gao, W. Shang, J. Chem. Crystallogr. 2009, 39, 683.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Fujita, Y. J. Kwon, M. Miyazawa, K. Ogura, Chem. Commun. 1994, 1977.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y.-F. Hsu, H.-L. Hu, C.-J. Wu, C.-W. Yeh, D. M. Proserpio, J.-D. Chen, CrystEngComm 2009, 11, 168.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. O’Keeffe, M. Eddaoudi, H. Li, T. Reineke, O. M. Yaghi, J. Solid State Chem. 2000, 152, 3.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) B. F. Abrahams, R. W. Elliott, T. A. Hudson, R. Robson, CrystEngComm 2012, 14, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1KqsLnE&md5=0464f93c0ce3e0a7130fcc4d9a264053CAS |
(b) X. Zhang, Z. Zhang, H. Zhao, J.-G. Mao, K. R. Dunbar, Chem. Commun. 2014, 1429.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. Nafady, A. M. Bond, A. Bilyk, A. R. Harris, A. I. Bhatt, A. P. O’Mullane, R. De Marco, J. Am. Chem. Soc. 2007, 129, 2369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlemtr4%3D&md5=8156c4d0e4ebbbfeab734d9953915e3eCAS |
[5] (a) T. M. Fasina, J. C. Collings, J. M. Burke, A. S. Batsanov, R. M. Ward, D. Albesa-Jove, L. Porres, A. Beeby, J. A. K. Howard, A. J. Scott, W. Clegg, S. W. Watt, J. Mater. Chem. 2005, 15, 690.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1Wmsw%3D%3D&md5=53e51dfc9668f0789b67d45de2f5d1faCAS |
(b) C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem. Int. Ed. 2004, 43, 1466.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Cehak, A. Chyla, M. Radomska, R. Radomski, Mol. Cryst. Liq. Cryst. 1985, 120, 327.
| Crossref | GoogleScholarGoogle Scholar |
[6] F. Arslan, H. Ölmez, M. Odabaşoğlu, O. Büyükgüngör, Z. Anorg. Allg. Chem. 2010, 636, 1641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslWgsr8%3D&md5=a468fb304bf098b0d4e75394a858e6ceCAS |
[7] M. R. Bermejo, R. Pedrido, M. Isabel Fernández, A. M. González-Noya, M. Maneiro, M. Jesús Rodríguez, M. J. Romero, M. Vazquez, Inorg. Chem. Commun. 2004, 7, 4.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslynsrw%3D&md5=f27e9de3e1dbc8cc0a3424a220852811CAS |
[8] (a) Y. Inomata, T. Haneda, F. S. Howell, J. Inorg. Biochem. 1999, 76, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFaisb4%3D&md5=8f0553d2c0fe664b08a8e731e00629f3CAS |
(b) A. Koleżyński, Physica B 2010, 405, 3650.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Marandi, A. A. Soudi, A. Morsali, R. Kempe, Z. Anorg. Allg. Chem. 2005, 631, 1932.
| Crossref | GoogleScholarGoogle Scholar |
[9] J.-P. Veder, A. Nafady, G. Clarke, R. P. Williams, R. De Marco, A. M. Bond, Electrochim. Acta 2011, 56, 1546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Sqt7bO&md5=cc125a09180a19eb50e0af41abdb3608CAS |
[10] P. J. Trotter, M. G. Mason, L. J. Gerenser, J. Phys. Chem. 1977, 81, 1325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktlygsLk%3D&md5=7708b0dbfc662ad3ddc4c9c71c2d5504CAS |
[11] (a) L. Hu, X. Cao, J. Yang, M. Li, H. Hong, Q. Xu, J. Ge, L. Wang, J. Lu, L. Chen, H. Gu, Chem. Commun. 2011, 1303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVOqsg%3D%3D&md5=4a14be78906d08305edd2669f8027032CAS |
(b) F. Su, S. C. Mathew, G. Lipner, X. Fu, M. Antonietti, S. Blechert, X. Wang, J. Am. Chem. Soc. 2010, 132, 16299.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVeht7s%3D&md5=85fe94ea8469044c9860fe50dddba574CAS |
[13] A. Nafady, A. P. O’Mullane, A. M. Bond, Coord. Chem. Rev. 2014, 268, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXms1CmtbY%3D&md5=62d81625538875f61155e6386c7a29b7CAS |
[14] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=bbf11b61d118c610f2c097c0395e80d8CAS |
[15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).
[16] G. Sheldrick, Acta Crystallogr. Sect. A. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=933d4ded754510f3d6dd59e45c48aab3CAS |