Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Alkali Metal Ion-Exchanged Zeolite X from Bamboo Leaf Biomass as Base Catalysts in Cyanoethylation of Methanol Enhanced by Non-Microwave Instant Heating

Eng-Poh Ng A G , Jack-Hao Chow A , Siew-Fang Wong A , Rino R. Mukti B C , Oki Muraza D , Tau Chuan Ling E and Ka-Lun Wong F G
+ Author Affiliations
- Author Affiliations

A School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.

B Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Bandung 40132, Indonesia.

C Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia.

D Center of Research Excellence in Nanotechnology and Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

E Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.

F Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Republic of Singapore.

G Corresponding authors. Email: epng@usm.my; kalun.wong@nie.edu.sg

Australian Journal of Chemistry 70(12) 1239-1246 https://doi.org/10.1071/CH17168
Submitted: 31 March 2017  Accepted: 21 June 2017   Published: 25 July 2017

Abstract

A series of alkali form (Na, K, Cs, and Ca) faujisite X-type zeolites were prepared from bamboo leaf ash, which was derived from bamboo agricultural waste. The XRD and SEM results revealed that the zeolite structure remained intact after ion exchange treatment. A very high degree of ion exchange (≥ 85 %) was achieved in all of the prepared zeolite samples. The zeolite samples were tested in a solvent-free cyanoethylation reaction of methanol under an instant heating environment that mimicked microwave fast heating, which was explored for the first time. The catalytic performances of the zeolite samples were well correlated with their surface basicity, which was characterised by pyrrole adsorption followed by in situ infrared spectroscopy. The CsX zeolite showed excellent catalytic performance (~97 % reactant conversion and 100 % product selectivity within 15 min), which was comparable to the microwave-assisted system and superior to the normal reflux system. The catalytic activity of the CsX zeolite was retained even after 10 cycles of reaction.


References

[1]  S. M. Al-Jubouri, S. M. Holmes, Chem. Eng. J. 2017, 308, 476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsF2gtbzF&md5=2a1c5f2c3adba131bc02709c5cb991c7CAS |

[2]  D. Y. Khoo, W. M. Kok, R. R. Mukti, S. Mintova, E.-P. Ng, Solid State Sci. 2013, 25, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Ojs7%2FI&md5=1db6f38fb2875351d37ade394f3feb31CAS |

[3]  G. Majano, E.-P. Ng, L. Lakiss, S. Mintova, Green Chem. 2011, 13, 2435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2hsrzM&md5=0414c18f4f9bfa608e16ecff623c8c4fCAS |

[4]  Structure Commission of the International Zeolite Association (IZA-SC), Database of Zeolite Structures 2017. Available at: http://www.iza-structure.org/databases/ (accessed 13 January 2017).

[5]  E.-P. Ng, L. Delmotte, S. Mintova, ChemSusChem 2009, 2, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFKrurg%3D&md5=9eb2bff44855141d2f45c9f92836c639CAS |

[6]  I. H. Abd El Maksod, E. A. Elzaharany, S. A. Kosa, E. Z. Hegazy, Microporous Mesoporous Mater. 2016, 224, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFagtrbF&md5=e878f619bd8ca6ed7637736184d63a4fCAS |

[7]  S. Sasikala, K. H. Gopi, S. D. Bhat, Microporous Mesoporous Mater. 2016, 236, 38.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1CgtrzM&md5=95cf99138e73f3d9ccbd642f514bd21eCAS |

[8]  H. Hattori, A. A. Amusa, R. B. Jermy, A. M. Aitani, S. S. Al-Khattaf, J. Mol. Catal. Chem. 2016, 424, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVanurrP&md5=153bedda96a6e8937c37e766690e772dCAS |

[9]  H. Han, M. Liu, X. Nie, F. Ding, Y. Wang, J. Li, X. Guo, C. Song, Microporous Mesoporous Mater. 2016, 234, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1ShsLzP&md5=3e7c17b3a172d19af3db8131c7997907CAS |

[10]  S. Manadee, O. Sophiphun, N. Osakoo, N. Supamathanon, P. Kidkhunthod, N. Chanlek, J. Wittayakun, S. Prayoonpokarach, Fuel Process. Technol. 2017, 156, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1alsLnM&md5=de762166d6e0485734018dc5ca9bd470CAS |

[11]  B.-Z. Zhou, M.-Y. Fu, J.-Z. Xie, X.-S. Yang, Z.-C. Li, J. For. Res. 2005, 16, 143.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  E. Villar-Cociña, E. V. Morales, S. F. Santos, H. Savastano, M. Frías, Cement Concr. Compos. 2011, 33, 68.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J.-T. Wong, E.-P. Ng, F. Adam, J. Am. Ceram. Soc. 2012, 95, 805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1yru7k%3D&md5=136b5484726b3becad9b8f756b5df312CAS |

[14]  E.-P. Ng, H. Awala, K.-H. Tan, F. Adam, R. Retoux, S. Mintova, Microporous Mesoporous Mater. 2015, 204, 204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVSisLbP&md5=72891e77b5b118a02b97f94d37fe4d53CAS |

[15]  E.-P. Ng, G. K. Lim, G.-L. Khoo, K.-H. Tan, B. S. Ooi, F. Adam, T. C. Ling, K.-L. Wong, Mater. Chem. Phys. 2015, 155, 30.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvV2lsL4%3D&md5=6f2deaf01002345effa18f179b55c241CAS |

[16]  M. Rilyanti, R. R. Mukti, G. T. M. Kadja, M. Ogura, H. Nur, E.-P. Ng, Microporous Mesoporous Mater. 2016, 230, 30.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnslajurY%3D&md5=e6bc3ccf55570a1d703de6d7f8f6d611CAS |

[17]  M. P. Moisés, C. T. P. da Silva, J. G. Meneguin, E. M. Girotto, E. Radovanovic, Mater. Lett. 2013, 108, 243.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  K.-W. Kow, R. Yusoff, A. R. A. Aziz, E. C. Abdullah, Appl. Surf. Sci. 2014, 301, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktV2lt78%3D&md5=a4cbdafc2a4a3fa36ed1cec95b63451aCAS |

[19]  F. Adam, S. Balakrishnan, P.-L. Wong, J. Physiol. Sci. 2006, 17, 1.
         | 1:CAS:528:DC%2BD2sXhsVKgs73I&md5=5cbac1e170978d19b18cddc7cb484913CAS |

[20]  J. S. Le Blond, C. J. Horwell, B. J. Williamson, C. Oppenheimer, J. Environ. Monit. 2010, 12, 1459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Wrs7w%3D&md5=152a5da44ccedaef3753b269bbc18928CAS |

[21]  S. Zamanian, A. N. Kharat, Chin. J. Catal. 2014, 35, 264.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslSksbg%3D&md5=d094caeef4f9f80159920b8cdb36912cCAS |

[22]  H. Kabashima, H. Hattori, Catal. Today 1998, 44, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1Kmurg%3D&md5=d4027ccc8d00ad5b4418cd0f1ab34cfcCAS |

[23]  S.-H. Guo, S.-Z. Xing, S. Mao, Y.-R. Gao, W.-L. Chen, Y.-Q. Wang, Tetrahedron Lett. 2014, 55, 6718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGjt7fP&md5=1d7c271ab0e9ed48e2070ff85c4cb878CAS |

[24]  L. Gašparovič, Z. Koreňová, L. Jelemenský, Chem. Pap. 2010, 64, 174.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  F. Adam, J. N. Appaturi, A. Iqbal, Catal. Today 2012, 190, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslSkurY%3D&md5=fa8b643c7377476c0df6742d0a28e0f4CAS |

[26]  E.-P. Ng, D. T. L. Ng, H. Awala, K.-L. Wong, S. Mintova, Mater. Lett. 2014, 132, 126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOkurzN&md5=5e45e9835fcc270249319aab1fef4f04CAS |

[27]  K.-H. Tan, H. Awala, R. R. Mukti, K.-L. Wong, B. Rigaud, T. C. Ling, H. A. Aleksandrov, I. Z. Koleva, G. N. Vayssilov, S. Mintova, E.-P. Ng, J. Agric. Food Chem. 2015, 63, 4655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslOhsLs%3D&md5=7aa7b4fdae68f059d551690dae8a0905CAS |

[28]  Y. Yang, N. Burke, J. Zhang, S. Huang, S. Lim, Y. Zhu, RSC Adv. 2014, 4, 7279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVGqsg%3D%3D&md5=93a2aa97c89e1b22464a2fa578dfa429CAS |

[29]  CRC Handbook of Chemistry and Physics, 85th edn (Ed. D. R. Lide) 2005 (CRC Press: Boca Raton, FL).

[30]  D. Y. Khoo, H. Awala, S. Mintova, E.-P. Ng, Microporous Mesoporous Mater. 2014, 194, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXoslCgsbY%3D&md5=8c3f469e977772bfcd91a64dda56da99CAS |

[31]  R. V. Siriwardane, M.-S. Shen, E. P. Fisher, Energy Fuels 2005, 19, 1153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlGls7s%3D&md5=037a623f08fc037928c1de1d85a7cd31CAS |

[32]  J. Kučera, P. Nachtigall, J. Phys. Chem. B 2004, 108, 16012.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  T. Seki, H. Tachikawa, T. Yamada, H. Hattori, J. Catal. 2003, 217, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVGqurw%3D&md5=966edb6cede30a873e0929f125eab9ddCAS |

[34]  L. G. Wade, Organic Chemistry, 6th edn 2006 (Pearson Education International: Hoboken, NJ).

[35]  E. C. Border, V. L. Blair, P. C. Andrews, Aust. J. Chem. 2015, 68, 844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotFWkuro%3D&md5=05f5d39d746403996a2e677feb0df3d2CAS |

[36]  P. Bana, I. Greiner, Aust. J. Chem. 2016, 69, 865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1KktLnN&md5=010b1005a862d39599474a30785a4ca3CAS |

[37]  P. Bana, I. Greiner, Aust. J. Chem. 2017, 70, 776.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtVygu7bM&md5=957dc9adf02ea71f7ac39570f40ea1a3CAS |

[38]  F. Adam, J. N. Appaturi, E.-P. Ng, J. Mol. Catal. Chem. 2014, 386, 42.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtFWiu7c%3D&md5=57416f0add5ada92517ceaa6693b924cCAS |