Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

MoO2 Formed on Mesoporous Graphene Oxide: Efficient and Stable Catalyst for Epoxidation of Olefins

Gang Bian A , Pingping Jiang A C , Kelei Jiang B , Yirui Shen A , Linggang Kong A , Ling Hu A , Yuming Dong A and Weijie Zhang A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.

B Wuxi WeiFu Lida Catalytic Converter Co. Ltd, Wuxi 214177, China.

C Corresponding author. Email: ppjiang@jiangnan.edu.cn

Australian Journal of Chemistry 70(9) 1039-1047 https://doi.org/10.1071/CH17089
Submitted: 13 February 2017  Accepted: 18 April 2017   Published: 19 May 2017

Abstract

A novel mesoporous MoO2 composite supported on graphene oxide (m-MoO2/GO) has been designed and applied as an efficient epoxidation catalyst. The m-MoO2/GO composite was characterised by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, Brunauer–Emmet–Teller surface area analysis, field emission scanning electron microscopy, and transmission electron microscopy. Compared with pure mesoporous MoO2 (m-MoO2) and amorphous MoO2-graphene oxide (a-MoO2/GO), m-MoO2/GO exhibits the best catalytic activity. The conversion and selectivity for cyclooctene are both over 99 % in 6 h. Remarkably, the mesoporous structure in m-MoO2/GO which derives from SiO2 nanospheres endows the catalyst better catalytic performance for long chain olefins: the conversion of methyl oleate can be as high as 82 %. Such a robust catalyst can be easily recycled and reused five times without significant loss of catalytic activity. This novel catalyst is promising in the synthesis of epoxides with a long carbon chain or large ring size.


References

[1]  K. Kamata, K. Yonehara, Y. Sumida, K. Hirata, S. Nojima, N. Mizuno, Angew. Chem. Int. Ed. 2011, 50, 12062.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgurrE&md5=e1120c71a067782570ab601a844b174bCAS |

[2]  M. Herbert, E. Álvarez, D. J. Cole-Hamilton, F. Montilla, A. Galindo, Chem. Commun. 2010, 46, 5933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslWitrk%3D&md5=7bec827eb3d4352c34c73d6c926f6709CAS |

[3]  S. P. Maradur, C. Jo, D.-H. Choi, K. Kim, R. Ryoo, ChemCatChem 2011, 3, 1435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmurrK&md5=64402e70d48f167854f58db5ff180db5CAS |

[4]  Y. Leng, J. Wang, D. Zhu, M. Zhang, P. Zhao, Z. Long, J. Huang, Green Chem. 2011, 13, 1636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlymsL0%3D&md5=c67db9fa6b5b5478151e25b429c487caCAS |

[5]  W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem. Soc. 1990, 112, 2801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFOqtLw%3D&md5=849d1ef6db89ae3077aaafb256ca4d3bCAS |

[6]  K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi, N. Mizuno, Science 2003, 300, 964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVOqu7Y%3D&md5=b84f1f80e82df28a9730655ce63954f2CAS |

[7]  Y. Lei, F. Mehmood, S. Lee, J. Greeley, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, R. J. Meyer, P. C. Redfern, D. Teschner, R. Schlögl, M. J. Pellin, L. A. Curtiss, S. Vajda, Science 2010, 328, 224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Cgt70%3D&md5=1ffd93034d62ac34ec0b1610eeb0084eCAS |

[8]  Y. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, Chem. Commun. 2010, 46, 550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFaisA%3D%3D&md5=caac12a9d0273a26c0474929f7e9f1b9CAS |

[9]  Y. Zuo, M. Liu, T. Zhang, L. Hong, X. Guo, C. Song, Y. Chen, P. Zhu, C. Jaye, D. Fischer, RSC Adv. 2015, 5, 17897.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlantLY%3D&md5=b4b5a2cfa92afd63f9e61cbbffc55121CAS |

[10]  W. Jia, Y. Liu, P. Hu, R. Yu, Y. Wang, L. Ma, D. Wang, Y. Li, Chem. Commun. 2015, 51, 8817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmvFagsbw%3D&md5=7592f846f19f822b650967dbf5618cf8CAS |

[11]  M. Bagherzadeh, M. Zare, T. Salemnoush, S. Özkar, S. Akbayrak, Appl. Catal. A 2014, 475, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFeru7Y%3D&md5=6980c8e5f12001ebd260a3760f71d00bCAS |

[12]  M. Amini, M. M. Haghdoost, M. Bagherzadeh, Coord. Chem. Rev. 2014, 268, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXms1Cmtbs%3D&md5=b28b08a5c7f498898313dbe909745785CAS |

[13]  Z. Deng, Y. Yang, X. Lu, J. Ding, M. He, P. Wu, Catal. Sci. Technol. 2016, 6, 2605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFGgtw%3D%3D&md5=dc4bc7fa41ef416e965e3c56aa6f9e21CAS |

[14]  Y. Leng, J. Liu, C. Zhang, P. Jiang, Catal. Sci. Technol. 2014, 4, 997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktV2gt7s%3D&md5=fb4ec18f422accd286113586053e0fffCAS |

[15]  Y. Jin, H. Wang, J. Li, X. Yue, Y. Han, P. K. Shen, Y. Cui, Adv. Mater. 2016, 28, 3785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xks1ekur8%3D&md5=43b4a2f7680b1ccd8d818bc24c3fd2a3CAS |

[16]  J. G. Lopez, M. Zaranek, P. Pawluc, R. M. Gauvin, A. Mortreux, Oil Gas Sci. Technol. 2016, 71, 20.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. Morlot, N. Uyttebroeck, D. Agustin, R. Poli, ChemCatChem 2013, 5, 601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvVCjs78%3D&md5=6779796fbf1301c835d3e1c3e0997109CAS |

[18]  A. Bento, A. Sanches, E. Medina, C. D. Nunes, P. D. Vaz, Appl. Catal. A 2015, 504, 399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvVGru7g%3D&md5=1edaa3cf79d97a53ab4bf764a9dc43e4CAS |

[19]  C.-C. Yang, S. Yacob, B. A. Kilos, D. G. Barton, E. Weitz, J. M. Notestein, J. Catal. 2016, 338, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XkvVyntbc%3D&md5=57efd546bc3cf70492554e3d1ced425fCAS |

[20]  E. Mannei, F. Ayari, M. Mhamdi, M. Almohalla, A. Guerrero Ruiz, G. Delahay, A. Ghorbel, Microporous Mesoporous Mater. 2016, 219, 77.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlWhtrfF&md5=ba323ae9ba339bea3c13f1cd97f6c759CAS |

[21]  S. L. Jain, B. Sain, Adv. Synth. Catal. 2008, 350, 1479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1Kjt7o%3D&md5=1a68dfb39083bb6b74712d0a2b8a36b7CAS |

[22]  M. R. Maurya, U. Kumar, P. Manikandan, Dalton Trans. 2006, 29, 3561.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  N. Merle, F. Le Quéméner, Y. Bouhoute, K. C. Szeto, A. De Mallmann, S. Barman, M. K. Samantaray, L. Delevoye, R. M. Gauvin, M. Taoufik, J.-M. Basset, J. Am. Chem. Soc. 2017, 139, 2144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVWnu77K&md5=ecc3af857a86495aafed34d6cd4a8ce3CAS |

[24]  H. P. Mungse, S. Verma, N. Kumar, B. Sain, O. P. Khatri, J. Mater. Chem. 2012, 22, 5427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVGnu7c%3D&md5=3cacf984bda8cff67451cf5a046f05f5CAS |

[25]  S.-J. Xia, F.-X. Liu, Z.-M. Ni, W. Shi, J.-L. Xue, P.-P. Qian, Appl. Catal. B 2014, 144, 570.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Wmtr3M&md5=a034452ddc40063f2ac05dba6ca6cac5CAS |

[26]  M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, N. S. Mirbagheri, Appl. Organomet. Chem. 2010, 24, 708.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2msb%2FI&md5=4631637e720f58b6cabad7c655481720CAS |

[27]  F. Esnaashari, M. Moghadam, V. Mirkhani, S. Tangestaninejad, I. Mohammadpoor-Baltork, A. R. Khosoropour, M. Zakeri, S. Hushmandrad, Polyhedron 2012, 48, 212.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WntLjJ&md5=1285cd7b33ce44d2711b994f37ce713bCAS |

[28]  J. Zhang, P. Jiang, Y. Shen, W. Zhang, X. Li, Microporous Mesoporous Mater. 2015, 206, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVert7Y%3D&md5=69fb584cd672b7ec8ab26f90669db88bCAS |

[29]  D. R. Dreyer, H.-P. Jia, C. W. Bielawski, Angew. Chem. Int. Ed. 2010, 122, 6965.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  B. Majumdar, T. Bhattacharya, T. K. Sarma, ChemCatChem 2016, 8, 1825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xms1KqtL4%3D&md5=7ab8f65cdd5cbf9f67dfe43e4b7fa848CAS |

[31]  L. Sun, H. Wang, K. Eid, S. M. Alshehri, V. Malgras, Y. Yamauchi, L. Wang, Electrochim. Acta 2016, 188, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xisl2jsg%3D%3D&md5=065ff67f5f1294115588a84296abb67eCAS |

[32]  R. Ge, X. Li, S.-Z. Kang, L. Qin, G. Li, Appl. Catal. B 2016, 187, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlansL0%3D&md5=b7b47286c17dff0378bf8ed6e96885b8CAS |

[33]  Z. Li, S. Wu, H. Ding, H. Lu, J. Liu, Q. Huo, J. Guan, Q. Kan, New J. Chem. 2013, 37, 4220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGgtLzM&md5=05554647581b636ea721ae4a52784482CAS |

[34]  Z. Li, S. Wu, D. Zheng, H. Liu, J. Hu, H. Su, J. Sun, X. Wang, Q. Huo, J. Guan, Q. Kan, Appl. Catal., A 2014, 470, 104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotlCqsw%3D%3D&md5=67d158e6c83f79786a88ba36a177de81CAS |

[35]  H. Su, Z. Li, Q. Huo, J. Guan, Q. Kan, RSC Adv. 2014, 4, 9990.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWlsb0%3D&md5=f543b4eb184bd615beecc58525c3ede4CAS |

[36]  Z. Li, S. Wu, D. Zheng, J. Liu, H. Liu, H. Lu, Q. Huo, J. Guan, Q. Kan, Appl. Organomet. Chem. 2014, 28, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFaqt7k%3D&md5=eba7442d2ebdfcf0209750947a3511caCAS |

[37]  L. Chen, Y. Zhou, W. Tu, Z. Li, C. Bao, H. Dai, T. Yu, J. Liu, Z. Zou, Nanoscale 2013, 5, 3481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslWguro%3D&md5=7f0bddc905588b65898e98dd780e4fb5CAS |

[38]  A. Dey, J. Athar, P. Varma, H. Prasant, A. K. Sikder, S. Chattopadhyay, RSC Adv. 2015, 5, 1950.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2lurnK&md5=6f678cd1f803b9c29f94f12a5ffb1ca4CAS |

[39]  R. Lin, L. Shen, Z. Ren, W. Wu, Y. Tan, H. Fu, J. Zhang, L. Wu, Chem. Commun. 2014, 50, 8533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFentbnF&md5=377c8ebd02b2b577ee547f0b1a8e3826CAS |

[40]  G. Bian, P. Jiang, W. Zhang, K. Jiang, L. Hu, Z. Jian, Y. Shen, P. Zhang, RSC Adv. 2015, 5, 90757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslSqsb7E&md5=b5ce7053717baee9cfd0ee3dee0ecc1eCAS |

[41]  Y. Wang, I. Djerdj, B. Smarsly, M. Antonietti, Chem. Mater. 2009, 21, 3202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVGjsb0%3D&md5=5f6aaf2a0dbaa6f66122f844a7b6bf0dCAS |

[42]  M. Dieterle, G. Mestl, Phys. Chem. Chem. Phys. 2002, 4, 822.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlOhtbY%3D&md5=f794c8d21a1bf2489af40d2ead17aa56CAS |

[43]  Y. Jin, H. Wang, J. Li, X. Yue, Y. Han, P. K. Shen, Y. Cui, Adv. Mater. 2016, 28, 3785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xks1ekur8%3D&md5=43b4a2f7680b1ccd8d818bc24c3fd2a3CAS |

[44]  Q. Tang, Z. Shan, L. Wang, X. Qin, Electrochim. Acta 2012, 79, 148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCjsbbK&md5=20cae42d3e3434aff0bdb10218938167CAS |

[45]  S. Petnikota, N. K. Rotte, M. V. Reddy, V. V. S. S. Srikanth, B. V. R. Chowdari, ACS Appl. Mater. Interfaces 2015, 7, 2301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXks1Kiug%3D%3D&md5=1c8b8b7553897650d5a328d6cf310b41CAS |

[46]  C. Shi, S. Zhang, X. Li, A. Zhang, M. Shi, Y. Zhu, J. Qiu, C. Au, Catal. Today 2014, 233, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWkt7jL&md5=11bec80183c19cadf20aba78f822decbCAS |

[47]  A. A. Savel’ev, A. G. Zheleznyi, D. A. Loktev, Weld. Int. 2012, 26, 787.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  R. W. Truss, B. Wood, R. Rasch, J. Appl. Polym. Sci. 2016, 133, 43023.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  J. Liu, S. Tang, Y. Lu, G. Cai, S. Liang, W. Wang, X. Chen, Energy Environ. Sci. 2013, 6, 2691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWqsr3L&md5=228a232e8f4b4a176fdff25b31009208CAS |

[50]  K. S. Rao, J. Sentilnathan, H.-W. Cho, J.-J. Wu, M. Yoshimura, Adv. Funct. Mater. 2015, 25, 298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGiur3L&md5=84fb38f30ebb7b73aa402b371d52865dCAS |

[51]  B. De’Nève, M. Delamar, T. T. Nguyen, M. E. R. Shanahan, Appl. Surf. Sci. 1998, 134, 202.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  S. Petnikota, S. K. Marka, A. Banerjee, M. V. Reddy, V. V. S. S. Srikanth, B. V. R. Chowdari, J. Power Sources 2015, 293, 253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovVCqtr4%3D&md5=a297c14916c1481e752066d10dc14cabCAS |

[53]  S. Petnikota, V. V. S. S. Srikanth, P. Nithyadharseni, M. V. Reddy, S. Adams, B. V. R. Chowdari, ACS Sustain. Chem. Eng. 2015, 3, 3205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslSlsb3E&md5=ee0aecdf9a8b09eddc72726346004e1dCAS |

[54]  M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y. J. Chabal, Nat. Mater. 2010, 9, 840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2msbjL&md5=ff86809cc841e385fad5e5de3a3bbcd0CAS |

[55]  H. K. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae, Y. H. Lee, Chem. Phys. Lett. 2009, 470, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisV2lt78%3D&md5=d4c9197fd73be8872fc05d2effb4eef8CAS |

[56]  A. Ōya, M. Kasahara, H. Ohashi, S. Ōtani, J. Am. Ceram. Soc. 1991, 74, 1439.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  S. Chaudhury, S. K. Mukerjee, V. N. Vaidya, V. Venugopal, J. Alloys Compd. 1997, 261, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1Khtbo%3D&md5=e323372b01651b3af8ff16da8f7fea9aCAS |

[58]  J. Yu, J. C. Yu, M. K.-P. Leung, W. Ho, B. Cheng, X. Zhao, J. Zhao, J. Catal. 2003, 217, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVGqtbk%3D&md5=5c8eaa7b6f6b149eec6f874e614984daCAS |

[59]  W. Fan, D. Shi, B. Feng, Catal. Commun. 2016, 74, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslOnsrnM&md5=8a82a4506f1bb0e2f897de40fc650225CAS |

[60]  S. Shylesh, J. Schweizer, S. Demeshko, V. Schünemann, S. Ernst, W. R. Thiel, Adv. Synth. Catal. 2009, 351, 1789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWhsrnE&md5=ecca36c6207752a8eb212110fd616ddcCAS |

[61]  C. I. Fernandes, M. S. Saraiva, T. G. Nunes, P. D. Vaz, C. D. Nunes, J. Catal. 2014, 309, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFyltr3M&md5=9c67cbd1d6f89d9484851755db7edd7cCAS |

[62]  C. I. Fernandes, M. D. Carvalho, L. P. Ferreira, C. D. Nunes, P. D. Vaz, J. Organomet. Chem. 2014, 760, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtVGgtLw%3D&md5=555db462b91adb65f9352c350665dc8dCAS |

[63]  S. Anandhakumar, M. Sasidharan, C.-W. Tsao, A. M. Raichur, ACS Appl. Mater. Interfaces 2014, 6, 3275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFWitLY%3D&md5=bc4cce1507e569daf5a6037441816d83CAS |

[64]  G. Bian, P. Jiang, H. Zhao, K. Jiang, L. Hu, Y. Dong, W. Zhang, ChemistrySelect 2016, 1, 1384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1altLvM&md5=a8de60a861ef75f88e7b546b7221ef93CAS |

[65]  H. L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, ACS Nano 2009, 3, 2653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWjsLbP&md5=01cdf20d0a018b56e630b550bc8734cdCAS |

[66]  C. Zhu, S. Guo, Y. Fang, S. Dong, ACS Nano 2010, 4, 2429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVyhsLc%3D&md5=64e078069b68213b084aea52494050aeCAS |