Electrophoretic Deposition of SnFe2O4–Graphene Hybrid Films as Anodes for Lithium Ion Batteries
Tao Xu A , Qinghan Meng B C , Meng Yang A , Wanyuan Zhi A and Bing Cao A CA College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
B The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
C Corresponding authors. Email: qhmeng@mail.buct.edu.cn; bcao@mail.buct.edu.cn
Australian Journal of Chemistry 70(10) 1073-1081 https://doi.org/10.1071/CH17060
Submitted: 28 January 2017 Accepted: 28 April 2017 Published: 6 June 2017
Abstract
Binder-free SnFe2O4–submillimetre (hundreds of micrometres)-sized reduced graphene oxide (SnFe2O4–srGO) hybrid films were synthesized through electrophoretic deposition and subsequent carbonization treatment. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy results revealed that SnFe2O4–srGO hybrid films exhibit both horizontal and vertical channels. SnFe2O4–srGO hybrid films were used as binder-free anodes for lithium ion half-cells and revealed a high capacity of ~1018.5 mA h g−1 at 0.1 A g−1 after 200 cycles. During rate performance tests, a high capacity of 464.1 mA h g−1 (~61.2 % retention) was maintained at a current density of 4 A g−1, indicating an excellent structural stability of SnFe2O4–srGO hybrid films at high current densities.
References
[1] M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. Subba Rao, B. V. R. Chowdari, Adv. Funct. Mater. 2007, 17, 2792.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ygurjN&md5=c77d6de471b8f0786d2ae212fddefed7CAS |
[2] H. Xu, M. Zeng, J. Li, X. Tong, RSC Adv. 2015, 5, 91493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslSqsLvM&md5=f90219205cf8ebe4c0d68a2c5c862453CAS |
[3] Y. Wang, F. Yan, S. W. Liu, A. Y. S. Tan, H. Song, X. W. Sun, H. Y. Yang, J. Mater. Chem. A 2013, 1, 5212.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1eku7g%3D&md5=3dc899562aeb2859960da2bf13dfddcfCAS |
[4] Y. Liu, P. Liu, D. Wu, Y. Huang, Y. Tang, Y. Su, F. Zhang, X. Feng, Chem. – Eur. J. 2015, 21, 5617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVeksLc%3D&md5=64e01f2535ae59693aed3615a992ef77CAS |
[5] M. S. Wu, C. J. Lin, C. L. Ho, Electrochim. Acta 2012, 81, 44.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWlsbbO&md5=826f8d6d4371ad596ec2dfe679efe732CAS |
[6] J. Zhou, L. Ma, H. Song, B. Wu, X. Chen, Electrochem. Commun. 2011, 13, 1357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFart7nO&md5=ecf53b5fdf971a92909737a09f81c512CAS |
[7] C. Z. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2014, 53, 1488.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1Cmsg%3D%3D&md5=4deb9cb3b9d580738f262eccf04ad3c7CAS |
[8] Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Adv. Energy Mater. 2016, 6, 1502175.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. T. Cherian, J. Sundaramurthy, M. V. Reddy, P. Suresh Kumar, K. Mani, D. Pliszka, C. H. Sow, S. Ramakrishna, B. V. R. Chowdari, ACS Appl. Mater. Interfaces 2013, 5, 9957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyls7%2FP&md5=9954ba6d90cf6c68cb401fc22c72f059CAS |
[10] L. P. Teo, M. H. Buraidah, N. A. Alias, M. Z. Kufian, S. R. Majid, A. K. Arof, Mater. Res. Innov. 2011, 15, s127.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Yao, Z. Yang, D. Zhang, W. Peng, H. Sun, S. Wang, Ind. Eng. Chem. Res. 2012, 51, 6044.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Smsbc%3D&md5=02519bbf3d86958784eb830226b85c84CAS |
[12] S. Yuvaraj, S. Amaresh, Y. S. Lee, R. K. Selvan, RSC Adv. 2014, 4, 6407.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmt1Oisw%3D%3D&md5=64770552260a5d4cdbdb30a9f2cd48c0CAS |
[13] Z. Li, Y. Zhou, C. Bao, G. Xue, J. Zhang, J. Liu, T. Yu, Z. Zou, Nanoscale 2012, 4, 3490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVOksbc%3D&md5=79c5e69ac2df25d94d0084164542d24cCAS |
[14] F. Han, W. C. Li, C. Lei, B. He, K. Oshida, A. H. Lu, Small 2014, 10, 2637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktVWnt7s%3D&md5=db167f09949559ad101ffcdf3badc46aCAS |
[15] G. Huang, S. Xu, Z. Xu, H. Sun, L. Li, ACS Appl. Mater. Interfaces 2014, 6, 21325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVWnsrbN&md5=ce84900545bb3b4f3595bc68cc38bcd0CAS |
[16] Q. Xie, F. Li, H. Guo, L. Wang, Y. Chen, G. Yue, D. L. Peng, ACS Appl. Mater. Interfaces 2013, 5, 5508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVaqt7g%3D&md5=410c9adee4ff8424f29e512bc56a879cCAS |
[17] Q. Zhang, H. Chen, J. Wang, D. Xu, X. Li, Y. Yang, K. Zhang, ChemSusChem 2014, 7, 2325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnvF2ksLY%3D&md5=d05f43abce8f01a857c4bf760f25eb57CAS |
[18] H. S. Jadhav, R. S. Kalubarme, C. N. Park, J. Kim, C. J. Park, Nanoscale 2014, 6, 10071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOjt7fM&md5=9e1580488ff4eeb7f12a0e48a7b2db82CAS |
[19] G. Gao, H. B. Wu, B. Dong, S. Ding, X. W. Lou, Adv. Sci. 2015, 2, 1400014.
| Crossref | GoogleScholarGoogle Scholar |
[20] F. Martinez-Julian, A. Guerrero, M. Haro, J. Bisquert, D. Bresser, E. Paillard, S. Passerini, G. Garcia-Belmonte, J. Phys. Chem. C 2014, 118, 6069.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjvV2rtL0%3D&md5=5919a2f859773eb0507f5199f8aacb89CAS |
[21] Y. Wang, D. Su, A. Ung, J. h. Ahn, G. Wang, Nanotechnology 2012, 23, 055402/1.
| 1:CAS:528:DC%2BC38XitlWjtbk%3D&md5=1ffcd07d64b7cdfd9242f46a32d7aaf4CAS |
[22] P. R. Kumar, P. Kollu, C. Santhosh, K. E. V. Rao, D. K. Kim, A. N. Grace, New J. Chem. 2014, 38, 3654.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCrsrbM&md5=291a187ed38008e7005ce9893b5b5780CAS |
[23] L. Lin, Q. Pan, J. Mater. Chem. A 2015, 3, 1724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2kt7zM&md5=2f17adb800cf9b324f97599214f6f903CAS |
[24] X. F. Chen, L. Qie, L. L. Zhang, W. X. Zhang, Y. H. Huang, J. Mater. Chem. A 2013, 559, 5.
| 1:CAS:528:DC%2BC3sXktlSju70%3D&md5=78d0fdce05d127047def8875fc45c927CAS |
[25] G. Zhang, L. Yu, H. B. Wu, H. E. Hoster, X. W. Lou, Adv. Mater. 2012, 24, 4609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWqt7c%3D&md5=e9571eebb7239cddba54dde9ea4560dbCAS |
[26] W. Kang, Y. Tang, W. Li, X. Yang, H. Xue, Q. Yang, C. S. Lee, Nanoscale 2015, 7, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGju7fK&md5=3851b192d42e90d30c31ecbc4d3ce475CAS |
[27] L. Zhang, S. Zhu, H. Cao, L. Hou, C. Yuan, Chem. – Eur. J. 2015, 21, 10771.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpvFWntrw%3D&md5=920e1d3a6a9c7385787500ef8c988aefCAS |
[28] Y. Zhang, Y. Zhang, C. Guo, B. Tang, X. Wang, Z. Bai, Electrochim. Acta 2015, 182, 1140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1OgtrvE&md5=cfb72fdc08c7afd26c15db418d378085CAS |
[29] M. J. Barmi, M. Minakshi Sundaram, ChemPlusChem 2016, 81, 964.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFynsbrK&md5=c62d40f2c0c033c514f1337c89114baaCAS |
[30] C. T. Cherian, M. V. Reddy, S. C. Haur, B. V. R. Chowdari, ACS Appl. Mater. Interfaces 2013, 5, 918.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVyn&md5=bc7c5f9366e718013bd71c04c374573bCAS |
[31] B. Wang, S. Li, B. Li, J. Liu, M. Yu, New J. Chem. 2015, 39, 1725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2rsr7J&md5=2c396aede56f2ff017ff2cc942f83552CAS |
[32] Z. Xing, Z. Ju, J. Yang, H. Xu, Y. Qian, Nano Res. 2012, 5, 477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGht7fO&md5=e0835193fe44c4db8ee460a3e4729dc3CAS |
[33] F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang, Y. Huang, Adv. Mater. 2014, 26, 6622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKrsrrF&md5=597539e9cfeb574c146f58ab16763a0bCAS |
[34] J. Zhang, J. Liang, Y. Zhu, D. Wei, L. Fan, Y. Qian, J. Mater. Chem. A 2014, 2, 2728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFantro%3D&md5=d7cb8164e20d199476ca91561d58d4abCAS |
[35] D. Cai, D. Wang, H. Huang, X. Duan, B. Liu, L. Wang, Y. Liu, Q. Li, T. Wang, J. Mater. Chem. A 2015, 3, 11430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsleku74%3D&md5=ea06cf1018c39cc80e461c5706103af0CAS |
[36] G. Gao, H. B. Wu, X. W. Lou, Adv. Energy Mater. 2014, 4, 1400422.
[37] Y. Wang, Z. J. Han, S. F. Yu, R. R. Song, H. H. Song, K. Ostrikov, H. Y. Yang, Carbon 2013, 64, 230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ylu7zJ&md5=2a44f22ab4f0be404d30ef9b9f2a5c47CAS |
[38] Y. Li, Q. Zhang, J. Zhu, X. L. Wei, P. K. Shen, J. Mater. Chem. A 2014, 2, 3163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFCqu7o%3D&md5=c7f4be0488c229bd7fa1a2ed5a0dc574CAS |
[39] H. Yue, Z. Shi, Q. Wang, T. Du, Y. Ding, J. Zhang, N. Huo, S. Yang, RSC Adv. 2015, 5, 75653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVWlsrjO&md5=c1a4d31a2cb02cfd392937343260399eCAS |
[40] Q. Li, L. Yin, Z. Li, X. Wang, Y. Qi, J. Ma, ACS Appl. Mater. Interfaces 2013, 5, 10975.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFelsrfL&md5=b962f5811bad3f82171a0ed46fd32554CAS |
[41] X. Wu, B. Wang, S. Li, J. Liu, M. Yu, RSC Adv. 2015, 5, 33438.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVOqsbk%3D&md5=be6e2127ee7a7c0135e241f9cb7787d6CAS |
[42] A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Khtrg%3D&md5=37bbc47a43e763b2d0672406e950b0e5CAS |
[43] A. Fasolino, J. H. Los, M. I. Katsnelson, Nat. Mater. 2007, 6, 858.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CgtLfP&md5=dcfd01693a4c5f906b24ba3971f48cb8CAS |
[44] G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, J. A. Stroscio, Science 2007, 317, 219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFaqsbc%3D&md5=5b0790c3805b41e8575511c44883cac4CAS |
[45] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science 2007, 315, 1379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKku7k%3D&md5=5071c18996b3ce18387b3f77e1ab2308CAS |
[46] A. Chavez-Valdez, M. S. P. Shaffer, A. R. Boccaccini, J. Phys. Chem. B 2013, 117, 1502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCrtbjF&md5=cde7c71f7a0ee783bcd2f2bc4ef9b4a2CAS |
[47] T. Xu, Q. H. Meng, T. Z. Shen, B. Cao, RSC Adv. 2015, 5, 73737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOrur7F&md5=45d8f653811b7d983a17df29174c5373CAS |
[48] J. Chen, B. Yao, C. Li, G. Q. Shi, Carbon 2013, 64, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgtbjI&md5=98dc9defafe50a8adb3dbdace5dcf0c2CAS |
[49] B. Wang, S. Li, J. Liu, M. Yu, B. Li, X. Wu, Electrochim. Acta 2014, 146, 679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyhsLvK&md5=4d758b3d40e73a9a6023c6f5466eb890CAS |
[50] F. Liu, T. Li, H. Zheng, Phys. Lett. A 2004, 323, 305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVyisr4%3D&md5=8de6c7bd5950592ade982ae5fd73500dCAS |
[51] H. Elmoussaoui, M. Hamedoun, O. Mounkachi, A. Benyoussef, R. Masrour, E. K. Hlil, J. Supercond. Novel Magn. 2012, 25, 1995.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVSnu7c%3D&md5=34835a8629b5f75066095f07490d36a7CAS |
[52] H. S. Zhang, K. Komvopoulos, Rev. Sci. Instrum. 2008, 79, 073905.
| Crossref | GoogleScholarGoogle Scholar |
[53] J. Barbosa, B. Almeida, J. A. Mendes, A. G. Rolo, J. P. Araújo, Phys. Status Solidi A 2007, 204, 1731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntl2msr8%3D&md5=939a64fd1036b2190c4ef36dcc372613CAS |
[54] R. Ramkumar, M. Minakshi Sundaram, New J. Chem. 2016, 40, 2863.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xps1OgsQ%3D%3D&md5=2b6aec0939c4354845db1d5a4beef60cCAS |
[55] D. Zhao, Y. Xiao, X. Wang, Q. Gao, M. Cao, Nano Energy 2014, 7, 124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyntLvI&md5=1e5e9ed2df4ef0c88c01a5a206c41034CAS |
[56] H. Lv, L. Ma, P. Zeng, D. Ke, T. Peng, J. Mater. Chem. 2010, 20, 3665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Gjt78%3D&md5=b86fabc296cf4a6a6299ff7b4749d243CAS |
[57] D. Wang, Y. Li, Q. Wang, T. Wang, J. Solid State Electrochem. 2012, 16, 2095.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVWhtbo%3D&md5=eb9cc938d78333cf014f11498ed6aa39CAS |
[58] M. Fondell, M. Gorgoi, M. Boman, A. Lindblad, J. Electron Spectrosc. Relat. Phenom. 2014, 195, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Klur7E&md5=d3b3f34011351947b41e68fb438f57a0CAS |
[59] X. T. Chen, K. X. Wang, Y. B. Zhai, H. J. Zhang, X. Y. Wu, X. Wei, J. S. Chen, Dalton Trans. 2014, 43, 3137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFalur0%3D&md5=2c1543dfcd6e88be829ea5fbd73f703bCAS |
[60] S. Zhang, L. Zhu, H. Song, X. Chen, J. Zhou, Nano Energy 2014, 10, 172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1KgsbfL&md5=fba28f05ec5e0a1ef4e957bcd215f73fCAS |
[61] K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui, L. Chen, ACS Appl. Mater. Interfaces 2012, 4, 658.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1Gn&md5=863e309bf33686bcfd7222dab6c222bfCAS |
[62] D. Liu, J. Shen, N. Liu, H. Yang, A. Du, Electrochim. Acta 2013, 89, 571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCmsbY%3D&md5=145835a08a6a517154ea508af944b752CAS |
[63] S. Liu, J. Xie, C. Fang, G. Cao, T. Zhu, X. Zhao, J. Mater. Chem. 2012, 22, 19738.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Ojs7jP&md5=cfc34b951647dd4a65e03452f5b3aeb7CAS |
[64] T. K. Hong, D. W. Lee, H. J. Choi, H. S. Shin, B. S. Kim, ACS Nano 2010, 4, 3861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVyjsbk%3D&md5=6d1f65161188ddd0c4c96f5e8013fefeCAS |
[65] M. Minakshi Sundaram, A. Biswal, D. Mitchell, R. Jones, C. Fernandez, Phys. Chem. Chem. Phys. 2016, 18, 4711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xps1Oktg%3D%3D&md5=a6d371b07b1ac22198cab7e76098c17bCAS |
[66] J. Deng, L. Chen, Y. Sun, M. Ma, L. Fu, Carbon 2015, 92, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtlKku7s%3D&md5=7822272ca1f41c41a6815f6aaa1ccc70CAS |
[67] S. Li, B. Wang, J. Liu, M. Yu, Electrochim. Acta 2014, 129, 33.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslejsrk%3D&md5=2be775ae395389e509bc3195861db6d7CAS |
[68] Z. Lei, F. Shi, L. Lu, ACS Appl. Mater. Interfaces 2012, 4, 1058.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVGhsw%3D%3D&md5=37ae74d86edc8764af1f9350faed98ebCAS |
[69] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, J. Power Sources 2014, 257, 421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOkurk%3D&md5=40c8c3f0d38521c84c5b84d8d9d56573CAS |
[70] M. Zhang, X. Yang, X. Kan, X. Wang, L. Ma, M. Jia, Electrochim. Acta 2013, 112, 727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSkt7vM&md5=b0d706115f0d2a8a4b25ced4d9855440CAS |