Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Shear Stress Induced Fabrication of Dandelion-Shaped Lanthanide Phosphate Nanoparticles

Nicholas J. D’Alonzo A , Paul K. Eggers A , Ela Eroglu A B and Colin L. Raston C D
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.

B Department of Chemical Engineering, Curtin University, Bentley, WA 6845, Australia.

C Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia.

D Corresponding author. Email: colin.raston@flinders.edu.au

Australian Journal of Chemistry 70(7) 823-829 https://doi.org/10.1071/CH16692
Submitted: 6 December 2016  Accepted: 24 January 2017   Published: 9 February 2017

Abstract

Lanthanide phosphate nanoparticles were co-precipitated under continuous flow in a vortex fluidic device in the presence of polyvinylpyrrolidone (PVP) of different molecular weights and at varying rotational speeds and tilt angles. Dandelion-shaped lanthanide phosphate particles were produced at rotation speeds of 5000 rpm and 7000 rpm. In contrast, individual rods formed at 9000 rpm. Transition electron microscope images reveal changes in morphology of the dandelion-shaped nanoparticles with changes in the chain length of PVP or tilt angle of the tube of the vortex fluidic device. These morphological changes are likely to arise from different wrapping and aggregation of the nanoparticles induced by the PVP polymer under shear.


References

[1]  B. M. Hutchins, T. T. Morgan, M. G. Ucak-Astarlioglu, M. E. Williams, J. Chem. Educ. 2007, 84, 1301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslOmtr8%3D&md5=ee867b4e0f44a1a5c3660ea50694c9edCAS |

[2]  C. Feldmann, T. Jüstel, C. R. Ronda, P. J. Schmidt, Adv. Funct. Mater. 2003, 13, 511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Wqt7w%3D&md5=53875828b1dbeb49b46f7d3eb6bb2ef7CAS |

[3]  N. Guo, Y. Song, H. You, G. Jia, M. Yang, K. Liu, Y. Zheng, Y. Huang, H. Zhang, Eur. J. Inorg. Chem. 2010, 4636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gqt7jI&md5=33dd5fa79a1eb3c1a4993b42c026b77bCAS |

[4]  F. Meiser, C. Cortez, F. Caruso, Angew. Chem., Int. Ed. 2004, 43, 5954.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCnurfN&md5=007651c7336e8966b1e6bfe8ab69f241CAS |

[5]  C. R. Patra, R. Bhattacharya, S. Patra, S. Basu, P. Mukherjee, D. Mukhopadhyay, Clin. Chem. 2007, 53, 2029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12jtbbP&md5=0d3d36b75f76cf1fe9925cd24fde9e67CAS |

[6]  Y. Takita, K.-I. Sano, T. Muraya, H. Nishiguchi, N. Kawata, M. Ito, T. Akbay, T. Ishihara, Appl. Catal., A 1998, 170, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1Oms7Y%3D&md5=1e5654dc8bba4eeb1d1a5ee732ad8388CAS |

[7]  M. Yang, H. You, K. Liu, Y. Zheng, N. Guo, H. Zhang, Inorg. Chem. 2010, 49, 4996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvF2jtLo%3D&md5=f9a039fc5481b0493c2c39f44f38ea94CAS |

[8]  L. Qian, W. Du, Q. Gong, X. Qian, Mater. Chem. Phys. 2009, 114, 479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktl2itw%3D%3D&md5=8f9e365ca89f4b3dab146818b53e4698CAS |

[9]  X. Wang, M. Gao, J. Mater. Chem. 2006, 16, 1360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFShsrk%3D&md5=a3d2d848477452664ae7be2bb7803589CAS |

[10]  J. Han, L. Wang, S. S. Wong, RSC Adv. 2014, 4, 34963.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCksL3K&md5=ec11969f9b122158ce3bfb4fa5329a38CAS |

[11]  J. Fang, M. Saunders, Y. Guo, G. Lu, C. L. Raston, K. S. Iyer, Chem. Commun. 2010, 46, 3074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1CrsLo%3D&md5=76f257023dcf7138755ad59ae1c3602dCAS |

[12]  H. Zhu, E. Zhu, H. Yang, L. Wang, D. Jin, K. Yao, J. Am. Ceram. Soc. 2008, 91, 1682.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFeitL4%3D&md5=ab055128ce0ecc92b3ef85dbc70700f1CAS |

[13]  F. Li, C. Li, X. Liu, T. Bai, W. Dong, X. Zhang, Z. Shi, S. Fenga, Dalton Trans. 2013, 42, 2015.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVChtw%3D%3D&md5=c7cde4cf1141c431ea1d5c16862ac9f2CAS |

[14]  S. Chall, S. S. Mati, S. Rakshit, S. C. Bhattacharya, J. Phys. Chem. C 2013, 117, 25146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslSgtb7M&md5=938326c122ee26f1fec91b7800ad1532CAS |

[15]  K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, M. Haase, Angew. Chem., Int. Ed. 2001, 40, 573.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVSqsrg%3D&md5=a49eff475a36c521dba9606af02032deCAS |

[16]  J. Fang, Y. Guo, G. Lu, C. L. Raston, K. S. Iyer, Green Chem. 2011, 13, 817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Khsrk%3D&md5=05f8dab3b917f312b1d67f00a3c1c50eCAS |

[17]  C. Wiles, P. Watts, Eur. J. Org. Chem. 2008, 1655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFaltLY%3D&md5=aadebda440f9bc28957c8941a3459bcbCAS |

[18]  E. R. Murphy, J. R. Martinelli, N. Zaborenko, S. L. Buchwald, K. F. Jensen, Angew. Chem., Int. Ed. 2007, 46, 1734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFWnsLY%3D&md5=37771f60e9ebf2d90a0da7fa5a50015aCAS |

[19]  P. H. Seeberger, Nat. Chem. 2009, 1, 258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFOjt7c%3D&md5=614f5fe0a20ac4fbecae801eacfd6246CAS |

[20]  S. Mohammadi, A. Harvey, K. V. K. Boodhoo, Chem. Eng. J. 2014, 258, 171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKhurbP&md5=4676cb5084ed40c0784d80ddeddc7c84CAS |

[21]  A. Aoune, C. Ramshaw, Int. J. Heat Mass Transfer 1999, 42, 2543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFWgs7s%3D&md5=4f4869be7fdd85c389498e61ae51df4bCAS |

[22]  K. V. K. Boodhoo, R. J. Jachuck, Green Chem. 2000, 2, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlSisbk%3D&md5=b43b49032f46b80a684056255814205bCAS |

[23]  L. Yasmin, X. Chen, K. A. Stubbs, C. L. Raston, Sci. Rep. 2013, 3, 2282.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  A. D. Martin, R. A. Boulos, L. J. Hubble, K. J. Hartlieb, C. L. Raston, Chem. Commun. 2011, 47, 7353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslSmsrs%3D&md5=24e644aa7a3f20dd4c74bbfc44e1dc31CAS |

[25]  X. Chen, J. F. Dobson, C. L. Raston, Chem. Commun. 2012, 48, 3703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFWnurk%3D&md5=a964770f28ff2d485fcb84a9cd27555cCAS |

[26]  W. Peng, X. Chen, S. Zhu, C. Guo, C. L. Raston, Chem. Commun. 2014, 50, 11764.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlOmtLjK&md5=470ace7047a3c1c24534100221a1ddffCAS |

[27]  Y.-P. Fang, A. W. Xu, R.-Q. Song, H.-X. Zhang, L.-P. You, J. C. Yu, Q. Liu, J. Am. Chem. Soc. 2003, 125, 16025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOgtbc%3D&md5=283334a390d1419f5640b17e49e61927CAS |

[28]  R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  R. Mooney, Acta Crystallogr. 1950, 3, 337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXlsV2mug%3D%3D&md5=a40d04077c5ed87acd6d463223252463CAS |

[30]  T. Roncal-Herrero, J. D. Rodrı’guez-Blanco, E. H. Oelkers, J. Nanopart. Res. 2011, 13, 4049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSiu7zI&md5=af65f66c2e599cf3da9e22e030ad74afCAS |

[31]  L. Yasmin, X. Chen, K. A. Stubbs, C. L. Raston, Chem. Commun. 2013, 49, 10932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslSgtL%2FJ&md5=7d56c4918eea1d248452a3dd0ddcc0d9CAS |

[32]  T. Z. Yuan, C. F. C. Ormonde, S. T. Kudlacek, S. Kunche, J. N. Smith, W. A. Brown, K. M. Pugliese, T. J. Olsen, M. Iftikhar, C. L. Raston, G. A. Weiss, ChemBioChem 2015, 16, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVaqsb8%3D&md5=5f3bbb5719d83cd2927c60c3866f2207CAS |

[33]  J. Britton, L. M. Meneghini, C. L. Raston, G. A. Weiss, Angew. Chem. 2016, 128, 11559.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  J. Britton, S. B. Dalziel, C. L. Raston, RSC Adv. 2015, 5, 1655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2ktbnL&md5=a04069221019f0fccdb3fd8368a448c5CAS |

[35]  R. A. Boulos, F. Zhang, E. S. Tjandra, A. D. Martin, D. Spagnoli, C. L. Raston, Sci. Rep. 2014, 4, 3616.

[36]  P. Pusztai, A. Kukovecz, Z. Konya, RSC Adv. 2014, 4, 49879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Gmu7rL&md5=34f93f27117189b8bbf94e5fc8f25329CAS |

[37]  R. Si, Y.-W. Zhang, L.-P. You, C.-H. Yan, J. Phys. Chem. B 2006, 110, 5994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVynsrY%3D&md5=8e0f8b8e812b1709919f31f940fa11d5CAS |

[38]  M. Runowski, S. Lis, J. Alloys Compd. 2014, 597, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksVShtbw%3D&md5=cf68336f1a48c2e883c9699e280a5fb7CAS |

[39]  J. Zou, K. S. Iyer, C. L. Raston, Small 2010, 6, 2358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlehurzO&md5=eb1cb2c02567bf2dc4c578ed92c4455aCAS |

[40]  K. S. Iyer, C. L. Raston, M. Saunders, Lab Chip 2007, 7, 1800.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlahtbbM&md5=0a79b50050f591a3206fe82944b541afCAS |

[41]  O. E. Litmanovich, Polym. Sci., Ser. C 2008, 50, 63.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  K. V. K. Boodhoo, W. A. E. Dunk, R. J. Jachuck, J. Appl. Polym. Sci. 2002, 85, 2283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVWrsL8%3D&md5=4fee675c892451791f72bfc8353a7a2cCAS |

[43]  J. Mo, P. K. Eggers, X. Chen, M. R. H. Ahamed, T. Becker, L. Yong Lim, C. L. Raston, Sci. Rep. 2015, 5, 10414.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  V. Kalra, F. Escobedo, Y. L. Joo, J. Chem. Phys. 2010, 132, 024901.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  H. S. Mumtaz, M. J. Hounslow, Chem. Eng. Sci. 2000, 55, 5671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1OisrY%3D&md5=4fea772596ae9cc09d3da536e5d980d8CAS |

[46]  D. Anne-Archard, M. d’Olce, M. Tourbin, C. Frances, Chem. Eng. Sci. 2013, 95, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvF2mur4%3D&md5=f82d494f0d0384b97eb9535d46c296f3CAS |

[47]  L. Yasmin, K. A. Stubbs, C. L. Raston, Tetrahedron Lett. 2014, 55, 2246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksFynt7k%3D&md5=7371c3b9ac3348018164c6ebdd178665CAS |