Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Fluorescent Ion Efflux Screening Assay for Determining Membrane-Active Peptides

Neil M. O’Brien-Simpson A B C F , Wenyi Li D E F , Namfon Pantarat A B C , Mohammed Akhter Hossain D E , Frances Separovic D , John D. Wade D E G and Eric C. Reynolds A B C G
+ Author Affiliations
- Author Affiliations

A Melbourne Dental School, University of Melbourne, Melbourne, Vic. 3010, Australia.

B Oral Health CRC, University of Melbourne, Melbourne, Vic. 3010, Australia.

C Bio21 Institute, University of Melbourne, Melbourne, Vic. 3010, Australia.

D School of Chemistry, University of Melbourne, Melbourne, Vic. 3010, Australia.

E The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia.

F These authors contributed equally to this article.

G Corresponding authors. Email: john.wade@florey.edu.au; e.reynolds@unimelb.edu.au

Australian Journal of Chemistry 70(2) 220-228 https://doi.org/10.1071/CH16659
Submitted: 24 November 2016  Accepted: 12 December 2016   Published: 23 December 2016

Abstract

A major global health threat is the emergence of antibiotic-resistant microbes. Coupled with a lack of development of modified antibiotics, there is a need to develop new antimicrobial molecules and screening assays for them. In this study, we provide proof of concept that a large unilamellar vesicle (LUV) method used to study chloride ion efflux facilitated by ionophores and surfactant-like molecules that disrupt membrane integrity can be adapted to identify membrane-interactive antimicrobial peptides (AMPs) and to screen relative activity of AMPs. Lucigenin was encapsulated in LUVs in the presence of Cl ion (NaCl), which quenches fluorescence, and then incubated with AMPs in 100 mM NaNO3 buffer. Upon AMP membrane interaction or disruption, the Cl ion is exchanged with the NO3 ion, and the resultant lucigenin fluorescence is indicative of relative AMP activity. Seven AMPs were synthesized by solid-phase peptide chemistry and incubated with LUVs of different phospholipid compositions. Each AMP resulted in lucigenin fluorescence, which was dose dependent, and the relative fluorescence correlated with the minimum inhibitory concentration and minimum bactericidal concentration values for the corresponding peptide. Furthermore, using mammalian model phospholipid LUVs, lucigenin-induced fluorescence also correlated with the AMP cytotoxicity half-maximal inhibitory concentration values. The proline-rich AMP, Chex1-Arg20, which is non-lytic but interacts with the bacterial membrane resulted in lucigenin fluorescence of bacterial membrane model LUVs but not of mammalian membrane model LUVs. The fluorescent ion efflux assay developed here should have applicability for most AMPs and could be tailored to target particular bacterial species membrane composition, potentially leading to the identification of novel membrane-interactive AMPs. The rapid high-throughput method also allows for screening of relative AMP activity and toxicity before biological testing.


References

[1]  J. O’Neill (Ed. Office PM), Tackling Drug-Resistant Infections Globally: Final Report and Recommendations 2014 (HM Government and Welcome Trust: UK).

[2]  World Health Organization, Antimicrobial Resistance: Global Report on Surveillance 2014 2014 (WHO: Geneva).

[3]  K. Lewis, Nat. Rev. Drug Discovery 2013, 12, 371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Ojt70%3D&md5=19950441a0bff69aecb08efe0fa7702dCAS |

[4]  L. B. Rice, Infect. Control Hosp. Epidemiol. 2010, 31, S7.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  K. A. Brogden, Nat. Rev. Microbiol. 2005, 3, 238.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslGjtbo%3D&md5=d06230bb10ee1551205480f003fa5d0bCAS |

[6]  W. Li, J. Tailhades, N. M. O’Brien-Simpson, F. Separovic, L. Otvos, M. A. Hossain, J. D. Wade, Amino Acids 2014, 46, 2287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSqs7bO&md5=94843a0335d90af9fa1950c094aee4ebCAS |

[7]  R. E. Hancock, H. G. Sahl, Nat. Biotechnol. 2006, 24, 1551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12gtbvM&md5=97164ec88439e91b752c917ea779d8e6CAS |

[8]  W. Soliman, L. Wang, S. Bhattacharjee, K. Kaur, J. Med. Chem. 2011, 54, 2399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyit7w%3D&md5=f620087df07e83c7c498252f9fc92360CAS |

[9]  S. R. Dennison, J. Wallace, F. Harris, D. A. Phoenix, Protein Pept. Lett. 2005, 12, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVOktA%3D%3D&md5=56c1977dd782c098be935e36df865929CAS |

[10]  A. Tossi, L. Sandri, A. Giangaspero, Biopolymers 2000, 55, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVylsrg%3D&md5=4755a8e85ab22f2b0f7774abd91a5b4dCAS |

[11]  S. J. Lam, N. M. O’Brien-Simpson, N. Pantarat, A. Sulistio, E. H. H. Wong, Y.-Y. Chen, J. C. Lenzo, J. A. Holden, A. Blencowe, E. C. Reynolds, G. G. Qiao, Nat. Microbiol. 2016, 1, 16162.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  W. Li, N. M. O’Brien-Simpson, J. Tailhades, N. Pantarat, R. M. Dawson, L. Otvos, E. C. Reynolds, F. Separovic, M. A. Hossain, J. D. Wade, Chem. Biol. 2015, 22, 1250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFaqsLrJ&md5=1e9b833618b019b439210f9eabfd4f58CAS |

[13]  N. M. O’Brien-Simpson, N. Pantarat, T. J. Attard, K. A. Walsh, E. C. Reynolds, PLoS One 2016, 11, e0151694.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  D. Raventos, O. Taboureau, P. H. Mygind, J. D. Nielsen, C. P. Sonksen, H. H. Kristensen, Comb. Chem. High Throughput Screening 2005, 8, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFyks70%3D&md5=c5d627d4999d0df1208b27b1abdfbacfCAS |

[15]  I. Zelezetsky, A. Tossi, Biochim. Biophys. Acta 2006, 1758, 1436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVanu7bF&md5=fa3a3a6bd744c1718e083574cd44086dCAS |

[16]  V. Carnicelli, A. R. Lizzi, A. Ponzi, G. Amicosante, A. Bozzi, A. Di Giulio, in Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education (Ed. A. Méndez-Vilas) 2013, pp. 1123–1134 (Formatex Research Center: Badajoz, Spain).

[17]  M.-A. Sani, T. C. Whitwell, J. D. Gehman, R. M. Robins-Browne, N. Pantarat, T. J. Attard, E. C. Reynolds, N. M. O’Brien-Simpson, F. Separovic, Antimicrob. Agents Chemother. 2013, 57, 3593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WgtLnO&md5=47d51e85323def424ac3437fa269521eCAS |

[18]  M. A. Sani, F. Separovic, Acc. Chem. Res. 2016, 49, 1130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnvFeqs78%3D&md5=7ca3562ac7020fba4c5eef31c3ed4e3bCAS |

[19]  S. Kobayashi, K. Takeshima, C. B. Park, S. C. Kim, K. Matsuzaki, Biochemistry 2000, 39, 8648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlOrt7s%3D&md5=6b9379f7c64b7c5dbef328fe791a9bd2CAS |

[20]  D. Rapaport, R. Peled, S. Nir, Y. Shai, Biophys. J. 1996, 70, 2502.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVCrtrY%3D&md5=3e1661649ced04e28461bc9a3b6a2a55CAS |

[21]  C. R. Elie, A. Hebert, M. Charbonneau, A. Haiun, A. R. Schmitzer, Org. Biomol. Chem. 2013, 11, 923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFaisrw%3D&md5=bd012fed54338b71a380e785797529adCAS |

[22]  A. Graefe, S. E. Stanca, S. Nietzsche, L. Kubicova, R. Beckert, C. Biskup, G. J. Mohr, Anal. Chem. 2008, 80, 6526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVGjtb4%3D&md5=a28cae0e278bfa823c0c5b6befb14a97CAS |

[23]  W. L. Masterton, D. Bolocofsky, T. P. Lee, J. Phys. Chem. 1971, 75, 2809.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXltFaqs70%3D&md5=67599babbc42d367cf7fabb3771a291cCAS |

[24]  A. Larena, J. Martínez Urreaga, Monatsh. Chem. 1991, 122, 907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsFSqt7k%3D&md5=23e1dcede6c202998035d97fe3c647b1CAS |

[25]  M. A. Sani, E. Gagne, J. D. Gehman, T. C. Whitwell, F. Separovic, Eur. Biophys. J. 2014, 43, 445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFGms7g%3D&md5=35a1b798a2dc462657a33fb5f6772ce5CAS |

[26]  R. F. Epand, P. B. Savage, R. M. Epand, Biochim. Biophys. Acta 2007, 1768, 2500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGrsrrN&md5=73f84662522212a01d466a037c65299bCAS |

[27]  W. Li, M. A. Sani, E. Jamasbi, L. Otvos, M. A. Hossain, J. D. Wade, F. Separovic, Biochim. Biophys. Acta 2016, 1858, 1236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjsVGqsrc%3D&md5=e3d5fa5fff6983afa692ecb8cc099505CAS |

[28]  M. Hong, Y. Su, Protein Sci. 2011, 20, 641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFWmsr0%3D&md5=b01d9bfc920c166fb633fb065a7224a9CAS |

[29]  F. Separovic, J. Gehrmann, T. Milne, B. A. Cornell, S. Y. Lin, R. Smith, Biophys. J. 1994, 67, 1495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVGnsr4%3D&md5=b35fcf5e0eeafb22689a3f9e35c6cd33CAS |

[30]  W. Li, J. Tailhades, M. A. Hossain, N. M. O’Brien-Simpson, E. C. Reynolds, L. Otvos, F. Separovic, J. D. Wade, Aust. J. Chem. 2015, 68, 1373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVKls7rM&md5=6c150176698d184baa68fda2176bf308CAS |

[31]  Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing: Twenty-third Informational Supplement M100-S23 2009 (CLSI: Wayne, PA).

[32]  M. A. Dickson, W. C. Hahn, Y. Ino, V. Ronfard, J. Y. Wu, R. A. Weinberg, D. N. Louis, F. P. Li, J. G. Rheinwald, Mol. Cell. Biol. 2000, 20, 1436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1eluw%3D%3D&md5=5df9bcc29ada34747997bba3b54bc0f9CAS |

[33]  N. Malanovic, K. Lohner, Pharmaceuticals. 2016, 9, 59.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  C. Sohlenkamp, O. Geiger, FEMS Microbiol. Rev. 2016, 40, 133.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  D. E. Warschawski, A. A. Arnold, M. Beaugrand, A. Gravel, É. Chartrand, I. Marcotte, Biochim. Biophys. Acta 2011, 1808, 1957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntV2nu7k%3D&md5=f112151a008983f8644bd8a4a36f3c1cCAS |