Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Combined Experimental and Theoretical Study on the Reaction Mechanism and Molecular Structure of 4-(Diphenylamino)-3-iodo-2(5H)-furanone

Xiumei Song A C , Fuling Xue B , Zongcai Feng A C , Yun Wang A C D , Zhaoyang Wang B and Yanli Xi A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Chemical Engineering, Ling Nan Normal University, Guangdong Province, Zhanjiang 524048, China.

B School of Chemistry and Environment, South China Normal University, Guangdong Province, Guangzhou 510006, China.

C Development Center for New Materials Engineering and Technology in Universities of Guangdong, Guangdong Province, Zhanjiang 524048, China.

D Corresponding author. Email: wangyun203@hotmail.com

Australian Journal of Chemistry 70(7) 837-844 https://doi.org/10.1071/CH16616
Submitted: 30 October 2016  Accepted: 25 January 2017   Published: 10 March 2017

Abstract

The simultaneous α-iodination and Nβ-arylation mechanism of 5-alkyloxy-4-phenylamino-2(5H)-furanone by (diacetoxyiodo)benzene was investigated by means of density functional theory (DFT) with B3LYP/6-31G*//LANL2DZ, selecting 4-(diphenylamino)-5-methyloxy-3-iodo-2(5H)-furanone as the calculation model. In addition, the effect of solvent on the reaction pathway was investigated using the Polarisable Continuum Model (PCM). Good agreement was found between the computational and the experimental results. Furthermore, single crystals of 4-(diphenylamino)-5-ethoxy-3-iodo-2(5H)-furanone were grown by slow evaporation technique. The molecular structure analysis was performed by single crystal X-ray analysis and theoretical calculations using a semi-empirical quantum chemical method and DFT/B3LYP methods with a LANL2DZ as basis set.


References

[1]  B. M. Trost, A. C. Burns, M. J. Bartlett, T. Tautz, A. H. Weiss, J. Am. Chem. Soc. 2012, 134, 1474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVGitw%3D%3D&md5=39479e3ec4a07097c6c057b6b9b05b07CAS |

[2]  J. P. Huo, J. C. Luo, W. Wu, J. F. Xiong, G. Z. Mo, Z. Y. Wang, Ind. Eng. Chem. Res. 2013, 52, 11850.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyhsb%2FE&md5=8535c822761fbd6e4de1d4793e6c2d23CAS |

[3]  Y. H. Tan, J. X. Li, F. L. Xue, J. Qi, Z. Y. Wang, Tetrahedron 2012, 68, 2827.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtV2rtrg%3D&md5=8a50417f62e3542d27eccdb251c168b2CAS |

[4]  Y. H. Tan, J. X. Li, J. P. Huo, F. L. Xue, Z. Y. Wang, Synth. Commun. 2014, 44, 2974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGgtbrE&md5=368f777fd215aa9f413880578b45e7abCAS |

[5]  J. M. Howell, W. Liu, A. J. Young, M. C. White, J. Am. Chem. Soc. 2014, 136, 5750.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktl2htrs%3D&md5=6905540dd28a434414cd3c0669593d83CAS |

[6]  T. Möller, P. Wonneberger, N. Kretzschmar, E. Hey-Hawkins, Chem. Commun. 2014, 50, 5826.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  E. R. Furuseth, R. Larsson, N. Blanco, M. Johansson, O. Sterner, Tetrahedron Lett. 2014, 55, 3667.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVantrs%3D&md5=d9773d131a1bf23679b06e44736075d4CAS |

[8]  Y. Luo, A. J. Carnell, Angew. Chem. Int. Ed. 2010, 49, 2750.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFGrs7w%3D&md5=ea4073be20fe9efe523d8fe9713eac5fCAS |

[9]  J. Luo, H. F. Wang, X. Han, L. W. Xu, J. Kwiatkowski, K. W. Huang, Y. X. Lu, Angew. Chem. Int. Ed. 2011, 50, 1861.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVOhtr0%3D&md5=5067fd10721b64b31116bb27f1408ddfCAS |

[10]  J. X. Li, H. R. Liang, Z. Y. Wang, J. H. Fu, Monatsh. Chem. 2011, 142, 507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsV2ntbc%3D&md5=a28f77c447272db88f50fa74dd7ab874CAS |

[11]  A. Yavorskyy, O. Shvydkiv, N. Hoffmann, K. Nolan, M. Oelgemöller, Org. Lett. 2012, 14, 4342.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wqu7zO&md5=ca90be908aae5a90104749aaccdb88c1CAS |

[12]  C. C. Yuan, B. Du, L. Yang, B. Liu, J. Am. Chem. Soc. 2013, 135, 9291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1altbk%3D&md5=5d67afbf56a8f90d4b6af6dda8ed9f35CAS |

[13]  X. S. Xue, X. Li, A. Yu, C. Yang, C. Song, J. P. Cheng, J. Am. Chem. Soc. 2013, 135, 7462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKqtL0%3D&md5=6f975ff3edd5c4749b9cdb5de7937cc4CAS |

[14]  L. Yin, H. Takada, N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 2013, 52, 7310.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVCisrY%3D&md5=cdbafdf9ddc4726f55a50835b8c43c9bCAS |

[15]  J. P. Huo, G. H. Deng, W. Wu, J. F. Xiong, M. L. Zhong, Z. Y. Wang, Macromol. Rapid Commun. 2013, 34, 1779.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cru77I&md5=78c324a09a03e062206bf718158d11c4CAS |

[16]  M. S. Reddy, N. Thirupathi, M. H. Babu, S. Puri, J. Org. Chem. 2013, 78, 5878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1aks70%3D&md5=e0502bf9bb9919c44c7c392a76240d93CAS |

[17]  X. X. Zhang, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 12230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt12rsr4%3D&md5=8c84db1152a67c3dd0342b6d56ca82dbCAS |

[18]  C. L. Fu, S. M. Ma, Eur. J. Org. Chem. 2005, 3942.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyhtLfM&md5=9092a71886af0a4f42da1e3d4454b48cCAS |

[19]  J. Boukouvalas, R. P. Loach, J. Org. Chem. 2008, 73, 8109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFeqs7zK&md5=134e26c68df6055e1784ef2875a45c46CAS |

[20]  B. X. Tang, Q. Yin, R. Y. Tang, J. H. Li, J. Org. Chem. 2008, 73, 9008.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GnurfF&md5=0c1fbdd4dc6dd83928c9dca728502610CAS |

[21]  F. L. Xue, P. Peng, J. Shi, M. L. Zhong, Z. Y. Wang, Synth. Commun. 2014, 44, 1944.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCjurfM&md5=852004da2543346533ad1fc2ca50c724CAS |

[22]  G. M. Sheldrick, SHELXS-97, Program for X-Ray Crystal Structure Solution 1997 (University of Göttingen: Göttingen).

[23]  G. M. Sheldrick, SHELXL-97, Program for X-Ray Crystal Structure Refinement 1997 (University of Göttingen: Göttingen).

[24]  D. K. Malick, G. A. Petersson, J. A. Montgomery, J. Chem. Phys. 1998, 108, 5704.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVWktL4%3D&md5=c591c131fd3e83e9748c67c8b39d6401CAS |

[25]  C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVahtbk%3D&md5=75414cbbb9efa65d0bc8c177e808fb17CAS |