Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

1,2-Diaryl-1,2-disodioethanes: Versatile, Highly Reactive, and Tunable Synthetic Equivalents of Sodium Metal

Ugo Azzena
+ Author Affiliations
- Author Affiliations

Dipartimento di Chimica e Farmacia, Università di Sassari, via Vienna 2, I-07100 Sassari, Italy. Email: ugo@uniss.it

Australian Journal of Chemistry 70(6) 647-651 https://doi.org/10.1071/CH16601
Submitted: 25 October 2016  Accepted: 18 November 2016   Published: 14 December 2016

Abstract

1,2-Diaryl-1,2-disodioethanes are easily prepared, versatile, and stable diorganometals finding application in 1,2-reductive eliminations as well as in the degradation of several persistent organic pollutants as homogeneous synthetic equivalents of a highly reactive form of Na metal. Understanding their reactivity in terms of their different electron-donor power, which is strongly affected by the nature of substituents located either on the aromatic ring(s) or on the carbanionic centers, allowed rationalization of their employment not only as chemoselective single electron transfer reducing reagents, but also as bases in the generation of enediolates of arylacetic acids bearing easily reducible carbon–halogen bonds.


References

[1]  J. R. Hwu, Y. S. Wein, Y.-J. Leu, J. Org. Chem. 1996, 61, 1493., and references cited therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XosVGhtA%3D%3D&md5=db56dc060f778248e319058b6c424cadCAS |

[2]  A. Gissot, J.-M. Becht, J. R. Desmurs, V. Pévére, A Wagner, C Mioskowski, Angew. Chem. Int. Ed. 2002, 41, 340.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVyit7k%3D&md5=e8a7a0d73f39bf26af0790c985c7c1b3CAS |

[3]  L. E. Harris, D. V. Hertzler, O. C. Dermer, E. J. Eisenbraun, J. Org. Chem. 1972, 37, 3039.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xltl2ktrg%3D&md5=df32015557fbfdbaf50e1471c7976fc9CAS |

[4]  T. R. van den Ancker, M. J. Hodgson, J. Chem. Soc., Perkin Trans. 1 1999, 2869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms12qt78%3D&md5=9160204712df481981d20815cd1b50e1CAS |

[5]  (a) M. M. Heravi, M. V. Fard, Z. Faghihi, Curr. Org. Chem. 2015, 19, 1491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOmtbjN&md5=ebfb2d169fc46c21b019d035e57df250CAS |
      (b) H. E. Zimmerman, Acc. Chem. Res. 2012, 45, 164.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  T. R. van den Ancker, C. J. Love, Org. Biomol. Chem. 2007, 5, 3520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOjur3P&md5=81ed76461bf2bb2bcd7f98344e766a8cCAS |

[7]  (a) J. E. Jackson, B. N. O’Brien, S. K. Kedzior, G. R. Fryz, F. S. Jalloh, A. Banisafar, M. A. Caldwell, M. B. Braun, B. M. Dunyak, J. L. Dye, Tetrahedron Lett. 2015, 56, 6227., and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Sqs7bK&md5=d405963ab137eb051111909c1874e551CAS |
      (b) M. J. Costanzo, M. N. Patel, K. A. Petersen, P. F. Vogt, Tetrahedron Lett. 2009, 50, 5463., and references therein.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. L. Dye, K. D. Cram, S. A. Urbin, M. Y. Redko, J. E. Jackson, M. Lefenfeld, J. Am. Chem. Soc. 2005, 127, 9338.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. Fürstner, G. Seidel, Synthesis 1995, 63.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. Seyferth, Organometallics 2009, 28, 2., and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2kt7zM&md5=32eb4e0a5b91ba661fa19788f078e088CAS |

[10]  These sodium derivatives are delocalized species that can be described either as dianions of the corresponding alkenes or as diorganometals. In this context, we found it practical to depict them as 1,2-diaryl-1,2-disodioethanes.

[11]  (a) See, for example: B. W. Knettle, R. A. Flowers, Org. Lett. 2001, 3, 2321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1WitLc%3D&md5=5f2c31b651d1c13c105a4a13f7c19a90CAS |
      (b) S. B. Bateni, K. R. England, A. T. Galatti, H. Kaur, V. A. Mendiola, A. R. Mitchell, M. H. Vu, B. F. Gherman, J. A. Miranda, Beilstein J. Org. Chem. 2009, 5, 82.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. S. Hanson, E. Doni, K. T. Traboulsee, G. Coulthard, J. A. Murphy, C. A. Dyker, Angew. Chem. Int. Ed. 2015, 54, 11236.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  U. Azzena, M. Pittalis, G. Dettori, S. Madeddu, E. Azara, Tetrahedron Lett. 2006, 47, 1055.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFKktw%3D%3D&md5=7319826d5dd2f499fa0fe2946a549bdaCAS |

[13]  U. Azzena, F. Kondrot, L. Pisano, M. Pittalis, Appl. Organomet. Chem. 2012, 26, 180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksV2jtrc%3D&md5=a88735cec97ca6ead1f032762804fd17CAS |

[14]  Typically, dianions 2ah were generated as 0.1–0.3 M deep red ethereal solutions (up to 100 mL), drained from excess of the metal under dry Ar, and immediately employed. It is, however, our experience that such solutions can be stored at 0°C (–10°C for 2g) for several days without detrimental effects.

[15]  U. Azzena, G. Dettori, C. Lubinu, A. Mannu, L. Pisano, Tetrahedron 2005, 61, 8663.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVygtbs%3D&md5=a40d927b22965f8f5a054621102ef088CAS |

[16]  U. Azzena, G. Dettori, M. V. Idini, L. Pisano, G. Sechi, Tetrahedron 2003, 59, 7961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVKksbc%3D&md5=0b63b0f538d3342be6e78e50b55f868fCAS |

[17]  (a) See, for example: C. E. Barry, R. B. Bates, W. A. Beavers, F. A. Camou, B. Gordon, H. F.-J. Hsu, N. S. Mills, C. A. Ogle, T. J. Siahaan, K. Suvannachut, S. R. Taylor, J. J. White, K. M. Yager, Synlett 1991, 207., and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVKnsbo%3D&md5=d6a4ff6d72135f405c542b378eadfea3CAS |
      (b) For a recent report concerning dianionic intermediates acting as SET reagents, see: J. P. Barham, G. Coulthard, R. G. Kane, N. Delgado, M. P. John, J. A. Murphy, Angew. Chem. Int. Ed. 2016, 55, 4492.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  U. Azzena, M. Pittalis, G. Dettori, L. Pisano, E. Azara, J. Organomet. Chem. 2007, 692, 3892., and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVSgtb4%3D&md5=75a975a177b64a946a5b92cc73fe6c51CAS |

[19]  U. Azzena, L. Pisano, S. Antonello, F. Maran, J. Org. Chem. 2009, 74, 8064.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1artb7M&md5=4d566fe3e2a3aeb3ec42cd70c5cf547dCAS |

[20]  U. Azzena, M. Carraro, L. Pisano, F. Mocci, S. Antonello, F. Maran, RSC Advances 2016, 6, 46813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XntFynu70%3D&md5=75d1cb1d4a5729c06337830489ff92c1CAS |

[21]  U. Azzena, G. Dettori, S. Mocci, L. Pisano, G. Cerioni, F. Mocci, Tetrahedron 2010, 66, 9171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlentL3K&md5=60e250a8330f49eb834ffad2ae2a91b5CAS |

[22]  The ease of reductive dehalogenation of organic halides follows the order I>Br>Cl>>F: F. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2002, 102, 4009.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Ghsro%3D&md5=b48b7bdc82929a74c2ea46acda07ca14CAS |

[23]  U. Azzena, M. Pittalis, Tetrahedron 2011, 67, 3360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFKiu74%3D&md5=50f02b5a614148c01fb6f90260af832eCAS |

[24]  U. Azzena, G. Dettori, L. Pisano, M. Pittalis, G. Mangano, G. Petretto, G. Pintore, Monatsh. Chem. 2012, 143, 601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVWgsLc%3D&md5=e33c5e9cca0e33fdbc9d85a23cf03475CAS |

[25]  M. Pittalis, U. Azzena, L. Pisano, Tetrahedron 2013, 69, 207., and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1aqsL7N&md5=197392d7821cb03cd1c596ecd03fb2d5CAS |

[26]  U. Azzena, G. Dettori, L. Pisano, M. Pittalis, Tetrahedron 2011, 67, 3470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFKhsrg%3D&md5=9c8e6a1fa1a66766c31106b6665d41c7CAS |

[27]  H. Braunschweig, C. Claes, A. Damme, A. Deißenberger, R. D. Dewhurst, C. Hörl, T. Kramer, Chem. Commun. 2015, 51, 1627.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitValtbjP&md5=29065eb23eedd92de649fceacb3c736aCAS |

[28]  K. Watanabe, N. Yamagiwa, Y. Torisawa, Org. Process Res. Dev. 2007, 11, 251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVyitLc%3D&md5=63c7a8c3b89355c3287b9656cc060ee1CAS |

[29]  V. Pace, P. Hoyos, L. Castoldi, P. D. de María, A. R. Alcántara, ChemSusChem 2012, 5, 1369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGhtLjI&md5=a9abfd1a0b28988d71022ba94075fb3cCAS |