Formate: A Possible Replacement for Formic Acid in Fuel Cells
Zhaoyi Yang A , Yaner Wang A , Ting Dong A , Xiufang Yuan A , Liulin Lv A , Xubing Wei A and Jun Wang A BA Department of Chemistry, Northeastern University, Shenyang, Liaoning, 110004, China.
B Corresponding author. Email: wangjun_chem@mail.neu.edu.cn
Australian Journal of Chemistry 70(7) 757-763 https://doi.org/10.1071/CH16585
Submitted: 12 October 2016 Accepted: 28 November 2016 Published: 6 January 2017
Abstract
We present a facile thermodynamic strategy for identifying formate electrooxidation at a Pt electrode in a fuel cell. Mixtures of formate and sulfuric acid are used as fuel solutions for maintaining formic acid at a low concentration and reducing CO poisoning of the Pt electrode. Pt is modified by a polyaniline porous film to improve the electrocatalytic activity towards formate oxidation. The result indicates that formate can bypass the poisoning path to form CO2 at a low potential. Additionally, we propose a new mechanism of formate electrooxidation and investigate the possibility of an independent oxidation path starting from free formate in solution.
References
[1] X. Yu, P. G. Pickup, J. Power Sources 2008, 182, 124.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVChsLg%3D&md5=5156b008eac69285e2414964507a6619CAS |
[2] W. Cai, L. Liang, Y. Zhang, W. Xing, C. Liu, Int. J. Hydrogen Energy 2013, 38, 212.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1eltLzJ&md5=1edc39404dd8dcf22aa209cc0f9b2685CAS |
[3] C. Chen, W. Liou, H. Lin, S. Wu, A. Borodzinski, L. Stobinski, P. Kedzierzawski, Fuel Cells 2010, 10, 227.
| Crossref | GoogleScholarGoogle Scholar |
[4] F. J. Vidal-Iglesias, A. López-Cudero, J. Solla-Gullón, J. M. Feliu, Angew. Chem., Int. Ed. 2013, 52, 964.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslejs7vE&md5=d7a1e8e101823728cd58373e026dee76CAS |
[5] S. Zhang, Y. Shao, G. Yin, Y. Lin, Angew. Chem., Int. Ed. 2010, 49, 2211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWrsrY%3D&md5=b70b816be81ff55ef188750ac02a481cCAS |
[6] M. Rezaei, S. H. Tabaian, D. F. Haghshenas, Electrocatalysis 2014, 5, 193.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1ehug%3D%3D&md5=2a17057d29f730603286fe0ae12ce1d0CAS |
[7] C. X. Guo, L. Y. Zhang, J. Miao, J. Zhang, C. M. Li, Adv. Energy Mater. 2013, 3, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVGjsrs%3D&md5=d04b31d9f55ff89f7c2d68f3b3276f1cCAS |
[8] H. Zhao, T. S. Zhao, Int. J. Hydrogen Energy 2013, 38, 1391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslyjt7%2FO&md5=87058cd3bcf851b561da301a1828afedCAS |
[9] J. M. Feliu, E. Herrero, in Handbook of Fuel Cells: Fundamentals, Technology and Applications, Vol. 2 (Eds W. Vielstich, H. Gasteiger, A. Lamm) 2003, pp. 625–633 (WILEY-VCH: Chichester).
[10] C. Rice, S. Ha, R. I. Masel, J. Power Sources 2003, 115, 229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Cqs7s%3D&md5=6aba27a5640b3bf79275d32b0acc30c0CAS |
[11] M. Chen, Z.-B. Wang, K. Zhou, Y.-Y. Chu, Fuel Cells 2010, 10, 1171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWnsbrP&md5=05ab45bfc73a10f564276f10de0c1be8CAS |
[12] N. V. Rees, R. G. Compton, J. Solid State Electrochem. 2011, 15, 2095.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12gsbnP&md5=7d856202f34ac0809fc4420c2e9ef475CAS |
[13] Y. Gao, C. Tan, Y. Li, J. Guo, Int. J. Hydrogen Energy 2012, 37, 3433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWqu74%3D&md5=6142243268ad1dbf863e96da08a6e197CAS |
[14] J. Guo, Y.-Y. Gao, C.-H. Tan, Y.-P. Li, S.-L. Zhao, L.-Z. Bai, S.-Y. Zhang, Fuel Cells 2013, 13, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1Wrs70%3D&md5=c53ae9c125d4be22ee1e30ad403f3ca6CAS |
[15] Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Langmuir 2006, 22, 10399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKitb7J&md5=860ad3633955e07b82bfcfc1606822ddCAS |
[16] J. Joo, T. Uchida, A. Cuesta, M. T. M. Koper, M. Osawa, J. Am. Chem. Soc. 2013, 135, 9991.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtValsbvE&md5=b84a23aa6df0b1c50a326055133b76ecCAS |
[17] W. Gao, J. A. Keith, J. Anton, T. Jacob, J. Am. Chem. Soc. 2010, 132, 18377.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. Jiang, J. Scott, A. Wieckowski, Electrochim. Acta 2013, 104, 124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlGktrc%3D&md5=49d047abaf5fd1e2c89c939a9576339bCAS |
[19] Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Angew. Chem., Int. Ed. 2006, 45, 981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFKmtr4%3D&md5=dcdd09effcfb4eca8e54a9b1e4f1c19bCAS |
[20] W. Zhong, D. Zhang, Catal. Commun. 2012, 29, 82.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSrs7nO&md5=817fa978a2205fc7a2bb3879626e8fa2CAS |
[21] S. Brimaud, J. Solla-Gull, I. Weber, J. M. Feliu, R. J. Behm, ChemElectroChem 2014, 1, 1075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVahs7s%3D&md5=5b523ced7ed9a3ff24c999c3bf610668CAS |
[22] T. Gojuki, Y. Numata, Y. Mukouyama, H. Okamoto, Electrochim. Acta 2014, 129, 142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslejtr4%3D&md5=9bc3d111c3dfa25c598334c42d334e43CAS |
[23] Y. Li, Y. He, W. Yang, J. Power Sources 2015, 278, 569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOnu7jI&md5=eae398496853057f3e25942e0be72768CAS |
[24] Y.-C. Chou, C.-Y. Tai, J.-F. Lee, T.-S. Chan, J.-M. Zen, Electrochim. Acta 2013, 104, 104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlGhsr4%3D&md5=53f03cd45f6e953a243f1d7484959898CAS |
[25] E. Kjeang, R. Michel, D. A. Harrington, D. Sinton, N. Djilali, Electrochim. Acta 2008, 54, 698.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Grur3J&md5=c26e908ff5deec5f647f04272e39eebdCAS |
[26] G. Samjeské, M. Osawa, Angew. Chem., Int. Ed. 2005, 44, 5694.
| Crossref | GoogleScholarGoogle Scholar |
[27] M. Amani, M. Kazemeini, M. Hamedanian, H. Pahlavanzadeh, H. Gharibi, Mater. Res. Bull. 2015, 68, 166.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtFGhurs%3D&md5=b9c3624920e5535a3a5f00396564028eCAS |
[28] R. Devi, C. S. Pundir, Sens. Actuators, B 2014, 193, 608.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOhsLc%3D&md5=82e37d4e170eb7034787daa288a900eeCAS |
[29] E. Seta, W. A. Lotowska, I. A. Rutkowska, A. Wadas, A. Raczkowska, M. Nieckarz, K. Brzostek, P. J. Kulesza, Aust. J. Chem. 2016, 69, 411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlslSqsLo%3D&md5=3c4258feef33f82d30ca46101577148bCAS |
[30] J. Wang, Y. Ning, Y. Wen, Y.-F. Wen, T. Dong, D. Yang, S. Chen, L. Zhang, Z. Phys. Chem. 2013, 227, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitl2gs7o%3D&md5=aaa110dfa66e493df86e9c2b18498d0dCAS |
[31] J. Wang, X. Qi, F. Meng, Y. Ning, S. Chen, D. Pang, Y. Wen, J. Phys. Chem. C 2009, 113, 1459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVWlsw%3D%3D&md5=3fb747d12d43ea5d9d33005f78a660c9CAS |
[32] C. Li, J. Wang, Y.-F. Wen, Y. Ning, Y. Wen, X. Yuan, M. Li, D. Yang, ECS Electrochem. Lett. 2013, 2, H1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVaktg%3D%3D&md5=50ae4477aaccd83c5338c6f820b0c6deCAS |
[33] A. G. Macdiarmid, J. C. Chiang, A. F. Richter, A. Epstein, Synth. Met. 1987, 18, 285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFSisbw%3D&md5=07e0a05828a788b5947107eb103337b2CAS |
[34] A. Riede, M. Helmstedt, I. Sapurina, J. Stejskal, J. Colloid Interface Sci. 2002, 248, 413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1yhsb0%3D&md5=020f73cd6a72cffb8c91fe01e928494aCAS |
[35] M. Neurock, M. Janik, A. Wieckowski, Faraday Discuss. 2009, 140, 363.
| Crossref | GoogleScholarGoogle Scholar |
[36] W. Chen, J. M. Kim, S. H. Sun, S. W. Chen, Langmuir 2007, 23, 11303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOhtrnE&md5=34e64c90ef4a73757b8e19e91676b12cCAS |
[37] A. M. Hofstead-Duffy, D.-J. Chen, S.-G. Sun, Y. J. Tong, J. Mater. Chem. 2012, 22, 5205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xislart7o%3D&md5=90b95eceda7dd7570615f468f473aef8CAS |
[38] M. Zhao, X. Wu, C. Cai, J. Phys. Chem. C 2009, 113, 4987.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFentb0%3D&md5=85ee57e33a6a6961f86300f4372bb931CAS |