Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

1-(+)-Dehydroabietylimidazolium Salts as Enantiomer Discriminators for NMR Spectroscopy

H. Q. Nimal Gunaratne A , Tiina Laaksonen B , Kenneth R. Seddon A and Kristiina Wähälä B C D
+ Author Affiliations
- Author Affiliations

A QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland, UK.

B Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, PO Box 55, FI-00014 University of Helsinki, Finland.

C Medicum, PO Box 21, FI-000140 University of Helsinki, Finland.

D Corresponding author. Email: kristiina.wahala@helsinki.fi

Australian Journal of Chemistry 70(7) 845-856 https://doi.org/10.1071/CH16545
Submitted: 27 September 2016  Accepted: 3 February 2017   Published: 8 March 2017

Abstract

Nine new (+)-dehydroabietylimidazolium salts were synthesised and studied as chiral solvating agents for several different racemic aromatic and non-aromatic carboxylate salts. These cationic chiral solvating agents resolve racemic ionic analytes better than non-ionic ones. Bis(dehydroabietylimidazolium) bis(trifluoromethanesulfonimide) gave the best discrimination for the enantiomers of carboxylate salts. Its resolution behaviour was studied by an NMR titration experiment, which indicated 1 : 1 complexation with the racemic analyte. The dehydroabietylimidazolium salts were also useful in enantiomeric excess (ee) determinations, and for the recognition of chirality of racemic aromatic and non-aromatic α-substituted carboxylic acids.


References

[1]  S. Witkowski, I. Wawer, in Stereoselective Synthesis of Drugs and Natural Products (Eds V. Andrushko, N. Andrushko) 2014, pp. 1483–1504 (John Wiley & Sons, Inc.: Hoboken, NJ).

[2]  H. Bergmann, B. Grosch, S. Sitterberg, T. Bach, J. Org. Chem. 2004, 69, 970.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFCjuw%3D%3D&md5=70ca26f99bb5e477e895461c8d34c137CAS |

[3]  (a) K. S. Heo, M. H. Hyun, Y. J. Cho, J. J. Ryoo, Chirality 2011, 23, 281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislOrsLY%3D&md5=394c56595fd426817a3d37967235da11CAS |
      (b) S. H. Grimm, L. Allmendinger, G. Hoefner, K. T. Wanner, Chirality 2013, 25, 923.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. Uccello-Barretta, F. Balzano, Top. Curr. Chem. 2013, 341, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvVWgsrk%3D&md5=94cfbfb9888cc00c75ce58548e06c61eCAS |

[5]  T. J. Wenzel, Discrimination of Chiral Compounds Using NMR Spectroscopy 2007 (John Wiley & Sons: Hoboken, NJ).

[6]  T. J. Wenzel, C. D. Chisholm, Chirality 2011, 23, 190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbk%3D&md5=daa381f38174893e37d7784dc5ece2daCAS |

[7]  (a) K. Tanaka, N. Fukuda, Tetrahedron Asymmetry 2009, 20, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtVSgsrg%3D&md5=2af899aa657a1721842b49dd0f2464ceCAS |
      (b) C. Pena, J. Gonzalez-Sabin, I. Alfonso, F. Rebolledo, V. Gotor, Tetrahedron 2008, 64, 7709.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Bozkurt, M. Durmaz, H. N. Naziroglu, M. Yilmaz, A. Sirit, Tetrahedron Asymmetry 2011, 22, 541.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W. Wang, F. Ma, X. Shen, C. Zhang, Tetrahedron Asymmetry 2007, 18, 832.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) W. Wang, X. Shen, F. Ma, Z. Li, C. Zhang, Tetrahedron Asymmetry 2008, 19, 1193.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Z. Luo, C. Zhong, X. Wu, E. Fu, Tetrahedron Lett. 2008, 49, 3385.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) V. Kumar, C. Pei, C. E. Olsen, S. J. C. Schaeffer, V. S. Parmar, S. V. Malhotra, Tetrahedron Asymmetry 2008, 19, 664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlOnur0%3D&md5=78ed75206cb6dd696fcfe4f470a967fcCAS |
      (b) V. Kumar, C. E. Olsen, S. J. C. Schaeffer, V. S. Parmar, S. V. Malhotra, Org. Lett. 2007, 9, 3905.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) W. J. Gottstein, L. C. Cheney, J. Org. Chem. 1965, 30, 2072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXktlyqs7w%3D&md5=875326df662cdc79f1364b30b5d1d61eCAS |
      (b) C. Bolchi, L. Fumagalli, B. Moroni, M. Pallavicini, E. Valoti, Tetrahedron Asymmetry 2003, 14, 3779.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) M. B. Foreiter, H. Q. N. Gunaratne, P. Nockemann, K. R. Seddon, P. J. Stevenson, D. F. Wassell, New J. Chem. 2013, 37, 515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2htro%3D&md5=bef6f03cacdbe4bbf6edf840a039dbdbCAS |
      (b) T. Laaksonen, S. Heikkinen, K. Wähälä, Org. Biomol. Chem. 2015, 13, 10548.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Laaksonen, S. Heikkinen, K. Wähälä, Molecules 2015, 20, 20873.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. B. Foreiter, H. Q. N. Gunaratne, P. Nockemann, K. R. Seddon, G. Srinivasan, Phys. Chem. Chem. Phys. 2014, 16, 1208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSltb%2FE&md5=7d1ba6a14902ccb037f5fedb19998905CAS |

[12]  (a) B. Altava, D. S. Barbosa, M. Isabel Burguete, J. Escorihuela, S. V. Luis, Tetrahedron Asymmetry 2009, 20, 999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVert7s%3D&md5=8f4e7205998a923b089fff1645345b48CAS |
      (b) V. Jurcik, R. Wilhelm, Tetrahedron Asymmetry 2006, 17, 801.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Jurcik, M. Gilani, R. Wilhelm, Eur. J. Org. Chem. 2006, 5103.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. L. De Rooy, M. Li, D. K. Bwambok, B. El-Zahab, S. Challa, I. M. Warner, Chirality 2011, 23, 54.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Bonanni, G. Soldaini, C. Faggi, A. Goti, F. Cardona, Synlett 2009, 747.
      (f) D. Drahonovsky, G. C. Labat, J. Sevcik, A. von Zelewsky, Heterocycles 2005, 65, 2169.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Vasiloiu, I. Cervenka, P. Gaertner, M. Weil, K. Schröder-Bica, Tetrahedron Asymmetry 2015, 26, 1069.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) S. Tabassum, M. A. Gilani, R. Wilhelm, Tetrahedron Asymmetry 2011, 22, 1632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOjtrzK&md5=cad2cd05247a60d972e6819395c171fbCAS |
      (b) L. Gonzalez, B. Altava, M. Bolte, M. I. Burguete, E. Garcia-Verdugo, S. V. Luis, Eur. J. Org. Chem. 2012, 4996.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) T. Heckel, A. Winkel, R. Wilhelm, Tetrahedron Asymmetry 2013, 24, 1127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOrtLbI&md5=88063732545b22e0c86a1b058ea8e1a7CAS |
      (b) S. A. Ashraf, Y. Pornputtkul, L. A. P. Kane-Maguire, G. G. Wallace, Aust. J. Chem. 2007, 60, 64.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Luo, D. Xu, H. Yue, L. Wang, W. Yang, Z. Xu, Tetrahedron Asymmetry 2006, 17, 2028.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  L. C. Cheney, U.S. patent 2787637 1957.

[16]  G. Su, L. Huo, W. Huang, H. Wang, Y. Pan, Chin. J. Struct. Chem. 2009, 28, 693.
         | 1:CAS:528:DC%2BD1MXosVCrtrg%3D&md5=87f50bb8d888c2f26299f4667e1a3d53CAS |

[17]  S. Stella, A. Chadha, Tetrahedron Asymmetry 2010, 21, 457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltF2gur0%3D&md5=24b189b8476238136e8f2ecb0764388eCAS |

[18]  (a) B. Job, Ann. Chim. 1928, 9, 113.
         | 1:CAS:528:DyaB1cXhvVWgsQ%3D%3D&md5=d7430f9486480934d20c0135290c53e5CAS |
      (b) P. MacCarthy, Anal. Chem. 1978, 50, 2165.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. M. S. Gil, N. C. Oliveira, J. Chem. Educ. 1990, 67, 473.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  M. Perez-Trujillo, L. Castanar, E. Monteagudo, L. T. Kuhn, P. Nolis, A. Virgili, R. T. Williamson, T. Parella, Chem. Commun. 2014, 10214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOns77P&md5=d68a50740a4d81425f0ea0a706bd9021CAS |

[20]  J. A. Aguilar, S. Faulkner, M. Nilsson, G. A. Morris, Angew. Chem. Int. Ed. Engl. 2010, 49, 3901.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVOgtbc%3D&md5=4d2905047c78432615151d91fde35842CAS |

[21]  S. R. Chaudhari, N. Suryaprakash, Chem. Phys. Lett. 2013, 555, 286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSku7fL&md5=ac05a059e13e51a35e5939eff404b392CAS |

[22]  S. R. Lokesh, N. Chaudhari, Suryaprakash, Org. Biomol. Chem. 2014, 12, 993.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFWhtw%3D%3D&md5=ed8a64ff46b665651e562f48335b5fc0CAS |

[23]  W. A. Anderson, R. Freeman, J. Chem. Phys. 1962, 37, 85.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xkslemtrc%3D&md5=307f55947b13f3b3dfeb71c1a28669f0CAS |

[24]  J. P. Jesson, P. Meakin, G. Kneissel, J. Am. Chem. Soc. 1973, 95, 618.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXnslOguw%3D%3D&md5=a125afc179fc8eda96cc2acf9298c3ddCAS |