Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Polyanhydride Nanoparticles: Thiol–Ene ‘Click’ Polymerizations Provide Functionalized and Cross-Linkable Nanoparticles with Tuneable Degradation Times

Olivia Z. Durham A , Katie L. Poetz A and Devon A. Shipp A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Biomolecular Science, and Center for Advanced Materials Processing Clarkson University, Potsdam, NY 13699-5810, USA.

B Corresponding author. Email: dshipp@clarkson.edu

Australian Journal of Chemistry 70(6) 735-742 https://doi.org/10.1071/CH16543
Submitted: 27 September 2016  Accepted: 15 November 2016   Published: 3 January 2017

Abstract

The production of degradable polyanhydride-based nanoparticles that exhibit tuneable degradation times using thiol–ene ‘click’ polymerizations is described. Linear polyanhydrides were used in the production of nanoparticles with diameters typically in the range of 250–400 nm using the emulsion–solvent evaporation method. A variety of reaction parameters, including polymer composition, surfactant species and concentration, sonication amplitude and duration, and reaction medium, were investigated to examine their impact on particle size. Also demonstrated are the potential to incorporate diverse functionality in the polymer network, the ability to load nanoparticles with a payload as exemplified by a model dye compound, and how the introduction of cross-linking into the polymer network extends degradation profiles, thereby allowing for tuneable degradation timeframes, which range from ~1 day to 14 days.


References

[1]  A. L. Sisson, M. Schroeter, A. Lendlein, Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications 2011 (Wiley-VCH Verlag: Weinheim, Germany).

[2]  K. W. Leong, B. C. Brott, R. Langer, J. Biomed. Mater. Res., Part A 1985, 19, 941.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtlGqsbg%3D&md5=50763b8353efccc8044e4364d7af0d0bCAS |

[3]  K. W. Leong, V. Simonte, R. Langer, Macromolecules 1987, 20, 705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtlyrsLw%3D&md5=a28ed9ae5d038a934a31cc7ffbd543caCAS |

[4]  E. Mathiowitz, R. Langer, J. Controlled Release 1987, 5, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvVersbw%3D&md5=f60aa810aa3653c10fa4f1d299591d41CAS |

[5]  A. S. Determan, B. G. Trewyn, V. S. Y. Lin, M. Nilsen-Hamilton, B. Narasimhan, J. Controlled Release 2004, 100, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosFSktbk%3D&md5=d3db1faf2092a52966197e5041c7596dCAS |

[6]  M. J. Kipper, E. Shen, A. Determan, B. Narasimhan, Biomaterials 2002, 23, 4405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVSrs7Y%3D&md5=ce9a36073e57bca5f1eda0c99bf5cb20CAS |

[7]  D. Larobina, G. Mensitieri, M. J. Kipper, B. Narasimhan, AIChE J. 2002, 48, 2960.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslWks7k%3D&md5=62942892b0e4a9483aef2ecfd02b062fCAS |

[8]  J. E. Vela Ramirez, R. Roychoudhury, H. H. Habte, M. W. Cho, N. L. B. Pohl, B. Narasimhan, J. Biomater. Sci., Polym. Ed. 2014, 25, 1387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ensb7K&md5=3afefae1fa067ca05833d01e9c77ff7cCAS |

[9]  E. Shen, R. Pizsczek, B. Dziadul, B. Narasimhan, Biomaterials 2001, 22, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlCgurs%3D&md5=e5c018b20135c9a8ac8aa5bf88a2b12fCAS |

[10]  L. K. Petersen, C. K. Sackett, B. Narasimhan, Acta Biomater. 2010, 6, 3873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVymurjJ&md5=4362128e477d30348c060119d7564b96CAS |

[11]  L. K. Petersen, C. K. Sackett, B. Narasimhan, J. Comb. Chem. 2010, 12, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyrtrzN&md5=3d85f7d6fe7d84460f9383617e7f86d9CAS |

[12]  R. Delgado-Rivera, R. Rosario-Melendez, W. Yu, K. E. Uhrich, J. Biomed. Mater. Res., Part A 2014, 102, 2736.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  K. L. Poetz, D. A. Shipp, Aust. J. Chem. 2016, 69, 1223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVKgsb7K&md5=bc94da97000b51cb73c70e5e22aba779CAS |

[14]  A. Conix, J. Polym. Sci., Polym. Phys. Ed. 1958, 29, 343.
         | 1:CAS:528:DyaF3cXhtVKlsb8%3D&md5=1211f6525cdc885a545f231656587821CAS |

[15]  J. W. Hill, W. H. Carothers, J. Am. Chem. Soc. 1932, 54, 1569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA38XisFyktw%3D%3D&md5=090104e66fbd53453a6312bcead88a88CAS |

[16]  N. Yoda, Makromol. Chem. 1959, 32, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXmvFWn&md5=8fe30720a135661b0811d6efcc2d1346CAS |

[17]  N. Yoda, Makromol. Chem. 1962, 56, 36.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXptFejsQ%3D%3D&md5=1311286aa2ebb671c7f378f673bf27c6CAS |

[18]  N. Yoda, Makromol. Chem. 1962, 55, 174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xks1amurs%3D&md5=0019256c4e39003612800624e88dae48CAS |

[19]  N. Yoda, Makromol. Chem. 1962, 56, 10.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXptFejsA%3D%3D&md5=be797080791a918d7e89d3fd622360a1CAS |

[20]  K. L. Poetz, H. S. Mohammed, B. L. Snyder, G. Liddil, D. S. K. Samways, D. A. Shipp, Biomacromolecules 2014, 15, 2573.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXot1yhs70%3D&md5=2e44a5c5bdbdb4942c7374427375d0fdCAS |

[21]  B. G. Rutherglen, R. A. McBath, Y. L. Huang, D. A. Shipp, Macromolecules 2010, 43, 10297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaktL7N&md5=2fba6d37b4f5f8156a80c212b67e4e44CAS |

[22]  D. A. Shipp, C. W. McQuinn, B. G. Rutherglen, R. A. McBath, Chem. Commun. 2009, 6415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yisrbJ&md5=a0e93d1a3367600b71060d3e4981d4b7CAS |

[23]  J. W. Chan, J. Shin, C. E. Hoyle, C. N. Bowman, A. B. Lowe, Macromolecules 2010, 43, 4937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFyrtLk%3D&md5=d7a81c9f55d952009f8956c405057a60CAS |

[24]  C. E. Hoyle, T. Y. Lee, T. Roper, J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVKgsrs%3D&md5=a7dca271c1b96f8eae4772abe11d810bCAS |

[25]  C. E. Hoyle, A. B. Lowe, C. N. Bowman, Chem. Soc. Rev. 2010, 39, 1355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Ggu74%3D&md5=0ba553fff09a028b41d74f4ae03715e4CAS |

[26]  H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed. 2001, 40, 2004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOis78%3D&md5=d3b3acda4b115b8ab65734492a87da7bCAS |

[27]  H. C. Kolb, K. B. Sharpless, Drug Discovery Today 2003, 8, 1128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVWkuro%3D&md5=2773e170bcb199625aacf21454d0907aCAS |

[28]  K. L. Poetz, O. Z. Durham, D. A. Shipp, Polym. Chem. 2015, 6, 5464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFSksrzI&md5=46275ed6671a0526a336ab31efb1b90aCAS |

[29]  O. Z. Durham, H. R. Norton, D. A. Shipp, RSC Adv. 2015, 5, 66757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1CgsLrF&md5=ce57c24b9c5894f457dc319870a1624cCAS |

[30]  O. Z. Durham, S. Krishnan, D. A. Shipp, ACS Macro Lett. 2012, 1, 1134.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12isL%2FF&md5=02464a1becb3b18a1be999669282ad96CAS |

[31]  O. Z. Durham, D. A. Shipp, Polymer 2014, 55, 1674.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1Kqs7o%3D&md5=9b8613ba9a163cc47d277b0439f65534CAS |

[32]  R. C. Mundargi, V. R. Babu, V. Rangaswamy, P. Patel, T. M. Aminabhavi, J. Controlled Release 2008, 125, 193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGjtL4%3D&md5=d9b3e8d0b1f701cfa11274f803c2da1cCAS |

[33]  S. Acharya, S. K. Sahoo, Adv. Drug Delivery Rev. 2011, 63, 170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktF2juro%3D&md5=a1d57607332a0b8d136a62495fd7d1ffCAS |

[34]  T. Govender, S. Stolnik, M. C. Garnett, L. Illum, S. S. Davis, J. Controlled Release 1999, 57, 171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXovFajtA%3D%3D&md5=4cf24fca499a79532afa106b15873f92CAS |

[35]  M. Chorny, I. Fishbein, H. D. Danenberg, G. Golomb, J. Controlled Release 2002, 83, 389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVCjsrg%3D&md5=403b27a6474b9b79f987c49631f4070fCAS |

[36]  T. Niwa, H. Takeuchi, T. Hino, N. Kunou, Y. Kawashima, J. Controlled Release 1993, 25, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlt1GisrY%3D&md5=4090ec384f0db05b9e2f08f5a46756dbCAS |

[37]  L. Mu, P.-H. Seow, S.-N. Ang, S.-S. Feng, Colloid Polym. Sci. 2004, 283, 58.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFCiurY%3D&md5=de762588ab125163513d9372e734340fCAS |