Macrocyclic Peptidomimetics Prepared by Ring-Closing Metathesis and Azide–Alkyne Cycloaddition
Ashok D. Pehere A B C , Xiaozhou Zhang A and Andrew D. Abell A CA Department of Chemistry and ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
B Current address: University of Texas M. D. Anderson Cancer Center, 1881 East Road, Houston, TX 77030, USA.
C Corresponding authors. Email: adpehere@mdanderson.org; andrew.abell@adelaide.edu.au
Ashok D. Pehere obtained his B.Sc. and M.Sc. degrees from the University of Pune, India. He spent 2002-2008 as a research chemist in Merck Pharmaceutical, Mumbai, India, and following that he received his Ph.D. degree from The University of Adelaide, Australia, under the direction of Professor Andrew D. Abell, working on the design, synthesis, and development of novel peptidomimetic-based protease inhibitors. This was followed by post-doctoral research at the University of Minnesota, USA, under the direction of Professor Thomas R. Hoye and Professor Marc A. Hillmyer, working on Diels-Alder reactions of furans and polymer synthesis. He is currently working as a research scientist at University of Texas M. D. Anderson Cancer Center, Houston, Texas (USA) on the design, synthesis, and characterization of multifunctional polypeptide polymer-based nanoparticles for the early detection, diagnosis, and treatment of cancer. |
Xiaozhou Zhang graduated from the University of Adelaide with a B.Sc. (Hon) degree and a Ph.D. degree under the supervision of Professor Andrew Abell. Her Ph.D. research focused on the development of peptidomimetic protease inhibitors and the study of their mechanism of action. This was followed by post-doctoral research at the ARC Centre of Excellence for Nanoscale Biophotonics at the University of Adelaide starting from 2015, with current research interests in developing biocompatible sensors and sensing strategies for detecting in vivo substrates with great biological importance. |
Andrew D. Abell graduated from the University of Adelaide with B.Sc. (Hon) and Ph.D. degrees and then undertook a post-doctoral fellowship at the University of Cambridge. He held a professorship at the University of Canterbury before returning to the University of Adelaide in 2007, where he is currently Professor of Chemistry and node director of the ARC Centre of Excellence for Nanoscale Biophotonics. His research interests are concerned with understanding the fundamental link between the chemical structure and shape of key bioactive molecules and their biological function. In Australia, he co-founded an Adelaide-based company (Calpain Therapeutics) to develop macrocyclic protease inhibitors as a potential treatment for cataract and other conditions. He is a former Head of School of Chemistry and Physics at the University of Adelaide and is a recent recipient of the Royal Australian Chemical Institute Adrien Albert Prize and the Alexander R. Matzuk Prize and Lecture in Drug Discovery (Baylor College of Medicine, Houston). |
Australian Journal of Chemistry 70(2) 138-151 https://doi.org/10.1071/CH16532
Submitted: 23 September 2016 Accepted: 21 October 2016 Published: 10 November 2016
Abstract
Macrocycles are finding increasing use as a means to define the backbone geometries of peptides and peptidomimetics. Ring-closing metathesis and CuI-catalyzed azide–alkyne cycloaddition are particularly useful for introducing such rings and they do so in high yield and with a good functional group tolerance and compatibility. Here, we present an overview of the use of these two methods, with reference to selected examples and particular reference to β-strand peptidomimetics for use as protease inhibitors.
References
[1] D. L. Nelson, M. M. Cox, Lehninger’s Principles of Biochemistry (4th edn) 2005 (W. H. Freeman and Company: New York, NY).[2] E. Marsault, M. L. Peterson, J. Med. Chem. 2011, 54, 1961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVSjtbo%3D&md5=dcd17f6adbccdce8073665e7bf4c9941CAS |
[3] (a) F. Giordanetto, J. Kihlberg, J. Med. Chem. 2014, 57, 278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGnurjI&md5=caafaac062ca1569c280ebb3642a9280CAS |
(b) E. M. Driggers, S. P. Hale, J. Lee, N. K. Terrett, Nat. Rev. Drug Discov. 2008, 7, 608.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Marti-Centelles, M. D. Pandey, M. I. Burguete, S. V. Luis, Chem. Rev. 2015, 115, 8736.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. J. White, A. K. Yudin, Nat. Chem. 2011, 3, 509.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. D. Pehere, A. D. Abell, in Proteases in Health and Disease (Eds S. Chakraborti, S. N. Dhalla) 2013, pp. 181–192 (Springer: New York, NY).
[4] J. A. Washington, W. R. Wilson, Mayo Clin. Proc. 1985, 60, 271.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) A. D. Abell, M. A. Jones, J. M. Coxon, J. D. Morton, S. G. Aitken, S. B. McNabb, H. Y. Y. Lee, J. M. Mehrtens, N. A. Alexander, B. G. Stuart, A. T. Neffe, R. Bickerstaff, Angew. Chem. Int. Ed. 2009, 48, 1455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFCltrs%3D&md5=65e7be2a3a3676753346b780db84c03dCAS |
(b) H. Y. Chen, W. T. Jiao, M. A. Jones, J. M. Coxon, J. D. Morton, R. Bickerstaffe, A. D. Pehere, O. Zvarec, A. D. Abell, Chem. Biodivers. 2012, 9, 2473.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. D. Pehere, A. D. Abell, Org. Lett. 2012, 14, 1330.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. K. Edmonds, A. D. Abell, J. Org. Chem. 2001, 66, 3747.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. D. Abell, M. A. Jones, A. T. Neffe, S. G. Aitken, T. P. Cain, R. J. Payne, S. B. McNabb, J. M. Coxon, B. J. Stuart, D. Pearson, H. Y. Y. Lee, J. D. Morton, J. Med. Chem. 2007, 50, 2916.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. Punna, J. Kuzelka, Q. Wang, M. G. Finn, Angew. Chem. Int. Ed. 2005, 44, 2215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslWrurg%3D&md5=fab4691d03dd6af3222e943077b3598fCAS |
[7] P. Botti, T. D. Pallin, J. P. Tam, J. Am. Chem. Soc. 1996, 118, 10018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFKltrk%3D&md5=4faba7e0a6aa3b483c9369e013969ed6CAS |
[8] (a) W. A. Loughlin, J. D. A. Tyndall, M. P. Glenn, T. A. Hill, D. P. Fairlie, Chem. Rev. 2010, 110, PR32.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksF2mtLk%3D&md5=998dd2baa56bd9a2d946c2ecd7314538CAS |
(b) P. K. Madala, J. D. A. Tyndall, T. Nall, D. P. Fairlie, Chem. Rev. 2010, 110, PR1.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) J. L. Martin, J. Begun, A. Schindeler, W. A. Wickramasinghe, D. Alewood, P. F. Alewood, D. A. Bergman, R. I. Brinkworth, G. Abbenante, D. R. March, R. C. Reid, D. P. Fairlie, Biochemistry 1999, 38, 7978.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVCksLw%3D&md5=9ee42e3a2ce6813d5eb717a0830b64f3CAS |
(b) T. A. Hill, N. E. Shepherd, F. Diness, D. P. Fairlie, Angew. Chem. Int. Ed. 2014, 53, 13020.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. C. Reid, M. J. Kelso, M. J. Scanlon, D. P. Fairlie, J. Am. Chem. Soc. 2002, 124, 5673.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) Y. Singh, M. J. Stoermer, A. J. Lucke, T. Guthrie, D. P. Fairlie, J. Am. Chem. Soc. 2005, 127, 6563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFartLc%3D&md5=afc364dca6542c1848c2f2728fb67f9cCAS |
(b) C. B. Xue, X. He, J. Roderick, W. F. DeGrado, R. J. Cherney, K. D. Hardman, D. J. Nelson, R. A. Copeland, B. D. Jaffee, C. P. Decicco, J. Med. Chem. 1998, 41, 1745.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) A. D. Pehere, M. Pietsch, M. Gutschow, P. M. Neilsen, D. S. Pedersen, S. Nguyen, O. Zvarec, M. J. Sykes, D. F. Callen, A. D. Abell, Chem. – Eur. J. 2013, 19, 7975.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtFSqur0%3D&md5=26aaad58b48ab0138350ebe528779de8CAS |
(b) A. D. Pehere, A. D. Abell, in The Synthesis of Macrocycles by Huisgen Cycloaddition (Eds E. Marsault, M. L. Peterson) 2016, in press (Wiley-VCH: Weinheim).
[12] (a) Y. S. Tsantrizos, G. Bolger, P. Bonneau, D. R. Cameron, N. Goudreau, G. Kukolj, S. R. LaPlante, M. Llinas-Brunet, H. Nar, D. Lamarre, Angew. Chem. Int. Ed. 2003, 42, 1356.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlygsrc%3D&md5=32942207104e64665441495cb0e43909CAS |
(b) A. D. Abell, J. Gardiner, Org. Lett. 2002, 4, 3663.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) D. S. Pedersen, A. Abell, Eur. J. Org. Chem. 2011, 2399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVWhu7c%3D&md5=b2a37ef9f5fb1fe1059e3e45ceab7b90CAS |
(b) A. J. Phillips, A. D. Abell, Aldrichim Acta 1999, 32, 75.
[14] I. Schechter, A. Berger, Biochem. Biophys. Res. Commun. 1967, 27, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktVyhsrg%3D&md5=bf72b603fcbe091da5710893f6157f7dCAS |
[15] (a) A. Gradillas, J. Perez-Castells, Angew. Chem. Int. Ed. 2006, 45, 6086.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWnsr3P&md5=98ce5d707056737218170f6cf0987324CAS |
(b) M. Colombo, I. Peretto, Drug Discov. Today 2008, 13, 677.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) B. G. Stuart, J. M. Coxon, J. D. Morton, A. D. Abell, D. Q. McDonald, S. G. Aitken, M. A. Jones, R. Bickerstaffe, J. Med. Chem. 2011, 54, 7503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ymsr7O&md5=e880500877c1a9368878c0c263ac7943CAS |
(b) M. Pietsch, K. C. H. Chua, A. D. Abell, Curr. Top. Med. Chem. 2010, 10, 270.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. G. Aitken, A. D. Abell, Aust. J. Chem. 2005, 58, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1Gitw%3D%3D&md5=49b7182453d0c1d0b89b0b1757278c85CAS |
[18] A. D. Abell, N. A. Alexander, S. G. Aitken, H. Y. Chen, J. M. Coxon, M. A. Jones, S. B. McNabb, A. Muscroft-Taylor, J. Org. Chem. 2009, 74, 4354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVKku7c%3D&md5=75f09a8fdbfb1b0482a7ff2c138babd3CAS |
[19] K. C. H. Chua, M. Pietsch, X. Z. Zhang, S. Hautmann, H. Y. Chan, J. B. Bruning, M. Gutschow, A. D. Abell, Angew. Chem. Int. Ed. 2014, 53, 7828.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptlOju7g%3D&md5=7b06a01487af7eef2b6c88250af7f972CAS |
[20] X. Zhang, J. B. Bruning, J. H. George, A. D. Abell, Org. Biomol. Chem. 2016, 14, 6970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVClu7%2FF&md5=69f14554bdd63f4132aa5a5429afc92bCAS |
[21] S. A. Jones, P. M. Neilsen, L. Siew, D. F. Callen, N. E. Goldfarb, B. M. Dunn, A. D. Abell, ChemMedChem 2013, 8, 1918.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WmtbzL&md5=8a7f177423d2a0d33e76fe64e9e88872CAS |
[22] I. Rojo, J. A. Martin, H. Broughton, D. Timm, J. Erickson, H. C. Yang, J. R. McCarthy, Bioorg. Med. Chem. Lett. 2006, 16, 191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Citr%2FL&md5=d7c674f7edce3b436755554e52d4fd3fCAS |
[23] (a) C. Janus, CNS Drugs 2003, 17, 457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlKmu7o%3D&md5=305c9a9c296c83183f8aa7b29cb1bef8CAS |
(b) S. Hanessian, G. Q. Yang, J. M. Rondeau, U. Neumann, C. Betschart, M. Tintelnot-Blomley, J. Med. Chem. 2006, 49, 4544.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) R. Machauer, K. Laumen, S. Veenstra, J. M. Rondeau, M. Tintelnot-Blomley, C. Betschart, A. L. Jaton, Bioorg. Med. Chem. Lett. 2009, 19, 1366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Wms7Y%3D&md5=fef2731a21eb34e106b937df6172b8baCAS |
(b) R. Machauer, S. Veenstra, J. M. Rondeau, M. Tintelnot-Blomley, C. Betschart, U. Neumann, P. Paganetti, Bioorg. Med. Chem. Lett. 2009, 19, 1361.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) Y. T. Jiang, S. W. Andrews, K. R. Condroski, B. Buckman, V. Serebryany, S. Wenglowsky, A. L. Kennedy, M. R. Madduru, B. Wang, M. Lyon, G. A. Doherty, B. T. Woodard, C. Lemieux, M. G. Do, H. L. Zhang, J. Ballard, G. Vigers, B. J. Brandhuber, P. Stengel, J. A. Josey, L. Beigelman, L. Blatt, S. D. Seiwert, J. Med. Chem. 2014, 57, 1753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFaku7w%3D&md5=c0337b3080797d65b2dbff7dccd8b70eCAS |
(b) S. F. Neelamkavil, S. Agrawal, T. Bara, C. Bennett, S. Bhat, D. Biswas, L. Brockunier, N. Buist, D. Burnette, M. Cartwright, S. Chackalamannil, R. Chase, M. Chelliah, A. Chen, M. Clasby, V. J. Colandrea, I. W. Davies, K. Eagen, Z. Y. Guo, Y. X. Han, J. Howe, C. Jayne, H. Josien, S. Kargman, K. Marcantonio, S. W. Miao, R. Miller, A. Nolting, P. Pinto, M. Rajagopalan, R. Ruck, U. Shah, A. Soriano, D. Sperbeck, F. Velazquez, J. Wu, Y. Xia, S. Venkatraman, ACS Med. Chem. Lett. 2016, 7, 111.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Harper, J. A. McCauley, M. T. Rudd, M. Ferrara, M. DiFilippo, B. Crescenzi, U. Koch, A. Petrocchi, M. K. Holloway, J. W. Butcher, J. J. Romano, K. J. Bush, K. F. Gilbert, C. J. McIntyre, K. T. Nguyen, E. Nizi, S. S. Carroll, S. W. Ludmerer, C. Burlein, J. M. DiMuzio, D. J. Graham, C. M. McHale, M. W. Stahlhut, D. B. Olsen, E. Monteagudo, S. Cianetti, C. Giuliano, V. Pucci, N. Trainor, C. M. Fandozzi, M. Rowley, P. Coleman, J. P. Vacca, V. Summa, N. J. Liverton, ACS Med. Chem. Lett. 2012, 3, 332.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Rosenquist, B. Samuelsson, P. O. Johansson, M. D. Cummings, O. Lenz, P. Raboisson, K. Simmen, S. Vendeville, H. de Kock, M. Nilsson, A. Horvath, R. Kalmeijer, G. de la Rosa, M. Beumont-Mauviel, J. Med. Chem. 2014, 57, 1673.
| Crossref | GoogleScholarGoogle Scholar |
(e) X. C. Sheng, A. Casarez, R. Cai, M. O. Clarke, X. W. Chen, A. Cho, W. E. Delaney, E. Doerffler, M. Z. Ji, M. M. Mertzman, R. Pakdaman, H. J. Pyun, T. Rowe, Q. Y. Wu, J. Xu, C. U. Kim, Bioorg. Med. Chem. Lett. 2012, 22, 1394.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. E. Moses, A. D. Moorhouse, Chem. Soc. Rev. 2007, 36, 1249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVChu7w%3D&md5=1592b7b725623046d96b5d14ef5c9768CAS |
[27] R. Huisgen, in 1,3-Dipolar Cycloaddition – Introduction, Survey, Mechanism (Ed. A. Padwa) 1984, pp. 1–176 (John Wiley: New York, NY).
[28] See pp. 357–396 in: R. Huisgen, Centenary Lecture – 1,3-Dipolar Cycloadditions 1961 (Proceedings of the Chemical Society: London).
[29] C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVeks7w%3D&md5=40ce7458bc022872efeaa6a6526ff7ffCAS |
[30] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Ohsr4%3D&md5=fe9f6b13c78335a5d346bc92864dea5dCAS |
[31] L. Zhang, X. G. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, G. C. Jia, J. Am. Chem. Soc. 2005, 127, 15998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKgs7nJ&md5=cd99107813b3ef07e9bfabe7fecc1b73CAS |
[32] M. Nahrwold, T. Bogner, S. Eissler, S. Verma, N. Sewald, Org. Lett. 2010, 12, 1064.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2qsr8%3D&md5=d617d9bb31a20d1d7f2d77d2a7e304fcCAS |
[33] J. Y. Chen, Z. Nikolovska-Coleska, C. Y. Yang, C. Gomez, W. Gao, K. Krajewski, S. Jiang, P. Roller, S. M. Wang, Bioorg. Med. Chem. Lett. 2007, 17, 3939.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVClurc%3D&md5=2826d5820e302b8aae202186992b6b81CAS |
[34] S. R. Mandadapu, P. M. Weerawarna, A. M. Prior, R. A. Z. Uy, S. Aravapalli, K. R. Alliston, G. H. Lushington, Y. Kim, D. H. Hua, K. O. Chang, W. C. Groutas, Bioorg. Med. Chem. Lett. 2013, 23, 3709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFWqsbc%3D&md5=786be67e3bfe1be8333a283af4110537CAS |
[35] W. J. Choi, Z. D. Shi, K. M. Worthy, L. Bindu, R. G. Karki, M. C. Nicklaus, R. J. Fisher, T. R. Burke, Bioorg. Med. Chem. Lett. 2006, 16, 5265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlCqtrw%3D&md5=de9778eed16a63fad20f1d5a133174bbCAS |
[36] B. A. Seigal, W. H. Connors, A. Fraley, R. M. Borzilleri, P. H. Carter, S. L. Emanuel, J. Fargnoli, K. Kim, M. Lei, J. G. Naglich, M. E. Pokross, S. L. Posy, H. Shen, N. Surti, R. Talbott, Y. Zhang, N. K. Terrett, J. Med. Chem. 2015, 58, 2855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivF2qu78%3D&md5=33d8dc38e77dd9254c3ccb8f5316ebdeCAS |
[37] (a) K. S. Kim, L. P. Zhang, D. Williams, H. L. Perez, E. Stang, R. M. Borzilleri, S. Posy, M. Lei, C. Chaudhry, S. Emanuel, R. Talbott, Bioorg. Med. Chem. Lett. 2014, 24, 5022.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFOltbvN&md5=0ea4ef53c3eb442750c44fbdfe7b724fCAS |
(b) H. L. Perez, C. Chaudhry, S. L. Emanuel, C. Fanslau, J. Fargnoli, J. P. Gan, S. C. Traeger, R. Vuppugalla, D. D. Wei, G. D. Vite, R. L. Talbott, R. M. Borzilleri, J. Med. Chem. 2015, 58, 1556.
| Crossref | GoogleScholarGoogle Scholar |
[38] Y. Zhang, B. A. Seigal, N. K. Terrett, R. L. Talbott, J. Fargnoli, J. G. Naglich, C. Chaudhry, S. L. Posy, R. Vuppugalla, G. Cornelius, M. Lei, C. L. Wang, Y. R. Zhang, R. J. Schmidt, D. D. Wei, M. M. Miller, M. P. Allen, L. Li, P. H. Carter, G. D. Vite, R. M. Borzilleri, ACS Med. Chem. Lett. 2015, 6, 770.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptVGlsLs%3D&md5=5c4b601455a1340a4dee31a39fde9635CAS |
[39] P. M. Neilsen, A. D. Pehere, K. I. Pishas, D. F. Callen, A. D. Abell, ACS Chem. Biol. 2013, 8, 353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslemu7vN&md5=7ad1d5a1745bbe48a94740efb12419aaCAS |
[40] A. D. Pehere, C. J. Sumby, A. D. Abell, Org. Biomol. Chem. 2013, 11, 425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCiu7%2FM&md5=73d2b1a633b9d79a3e0270d941c522beCAS |
[41] A. D. Pehere, A. D. Abell, Tetrahedron Lett. 2011, 52, 1493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFGntL4%3D&md5=6d1bc532043c87b4734113a6c193f507CAS |