Coordination Behaviour of 1-(4,2′:6′,4″-terpyridin-4′-yl)ferrocene and 1-(3,2′:6′,3″-terpyridin-4′-yl)ferrocene: Predictable and Unpredictable Assembly Algorithms*
Y. Maximilian Klein A , Alessandro Prescimone A , Edwin C. Constable A and Catherine E. Housecroft A BA Department of Chemistry, University of Basel, Spitalstrasse 51, CH4056 Basel, Switzerland.
B Corresponding author. Email: catherine.housecroft@unibas.ch
Australian Journal of Chemistry 70(5) 468-477 https://doi.org/10.1071/CH16527
Submitted: 22 September 2016 Accepted: 16 October 2016 Published: 4 November 2016
Abstract
The reaction of 1-(4,2′:6′,4″-terpyridin-4′-yl)ferrocene (2) with ZnI2 leads to [{ZnI2(2)}4·1.4MeOH·0.8H2O] which contains a discrete [4+4] metallocycle. Crystal growth experiments demonstrate that reactions of 2 with Zn(OAc)2 or CuCl2 result in the formation of single- or double-stranded 1D polymer chains, respectively, the latter facilitated by the formation of {Cu2Cl4} dinuclear nodes. While both 2 and its isomer 1-(3,2′:6′,3″-terpyridin-4′-yl)ferrocene (3) present V-shaped donor sets, rotation about interannular bonds in 3 generates flexible vectorial properties associated with limiting convergent and divergent orientations of the nitrogen donors. The synthesis and characterisation of 3 are described as are reactions of 3 with ZnCl2 or ZnBr2 which lead, respectively, to a metallosquare in [{ZnCl2(3)}4·3CHCl3·3MeOH] or a helical polymer in [{ZnBr2(3)}·MeOH]n. The tight pitch of the helix in the latter (8.7879(9) Å) is controlled by a combination of the orientations of the N,N″-donor sets in 3, and intra-chain π-stacking interactions involving ferrocenyl and pyridine units.
References
[1] R. Horikoshi, Coord. Chem. Rev. 2013, 257, 621.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntleqtA%3D%3D&md5=ee6b7cee0a2d1a9b7bb6cb1950a6563fCAS |
[2] O. Oms, J. Le Bideau, F. Leroux, A. van der Lee, D. Leclercq, A. Vioux, J. Am. Chem. Soc. 2004, 126, 12090.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Gmt7c%3D&md5=cb07274eba1c5cb1ed2a27e3ab7b59c5CAS | 15382944PubMed |
[3] J. G. Eaves, R. Mirrazaei, D. Parker, H. S. Munro, J. Chem. Soc., Perkin Trans. 2 1989, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktFChsLg%3D&md5=c0cdecca0fda3a805cb036ba6dc0415fCAS |
[4] B. Adhikari, C. Singh, A. Shah, A. J. Lough, H.-B. Kraatz, Chem. – Eur. J. 2015, 21, 11560.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOlsr3K&md5=f252ea20b5cf786e4e005d703af388b9CAS | 26121412PubMed |
[5] M. Kubo, Y. Mori, M. Otani, M. Murakami, Y. Ishibashi, M. Yasuda, K. Hosomizu, H. Miyasaka, H. Imahori, S. Nakashima, J. Phys. Chem. A 2007, 111, 5136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslynu7k%3D&md5=5cd58be329b7222a4a6d0f1a750f2d4dCAS | 17530835PubMed |
[6] C. Bucher, C. H. Devillers, J.-C. Moutet, G. Royal, E. Saint-Aman, Chem. Commun. 2003, 888.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlyku74%3D&md5=1e7e5277f4541c0990a1e74efdc5ffb1CAS |
[7] M. C. Carrión, F. A. Jalón, A. López-Agenjo, B. R. Manzano, W. Weissensteiner, K. Mereiter, J. Organomet. Chem. 2006, 691, 1369.
| Crossref | GoogleScholarGoogle Scholar |
[8] H.-U. Blaser, W. Brieden, B. Pugin, F. Spindler, M. Studer, A. Togni, Top. Catal. 2002, 19, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVGmsr8%3D&md5=2855727387508a64faf48e12e1d66bbdCAS |
[9] O. Carugo, G. De Santis, L. Fabbrizzi, M. Licchelli, A. Monichino, P. Pallavicini, Inorg. Chem. 1992, 31, 765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xktlyqtbo%3D&md5=466e28267b5a7d62a5cb933faa4b965aCAS |
[10] T. Mochida, F. Shimizu, H. Shimizu, K. Okazawa, F. Sato, D. Kuwahara, J. Organomet. Chem. 2007, 692, 1834.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVensbg%3D&md5=f8b95fe8209b981c60789038239e4ac1CAS |
[11] R. Horikoshi, T. Mochida, Eur. J. Inorg. Chem. 2010, 5355.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyrsbrJ&md5=fbe74eadb1138e38261d32d60ed41916CAS |
[12] D. Braga, M. Polito, M. Bracaccini, D. D’Addario, E. Tagliavini, D. M. Proserpio, F. Grepioni, Chem. Commun. 2002, 1080.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFKgsbc%3D&md5=799acfefe7172cd476fdadba5b87ccdbCAS |
[13] N. Sadhukhan, J. K. Bera, Inorg. Chem. 2009, 48, 978.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFejurzK&md5=6fa062649485b176bc27dc65c4d53350CAS | 19105751PubMed |
[14] D. Braga, M. Curzi, S. L. Giaffreda, F. Grepioni, L. Maini, A. Pettersen, M. Polito, in Ferrocenes: Ligands, Materials and Biomolecules (Ed. P. Stepnicka) 2008, pp. 465–498 (Wiley: Chichester).
[15] See for example: P. Lai-Tee, T. S. A. Hor, Z. Zhong-Yuan, T. C. W. Mak, J. Organomet. Chem. 1994, 469, 253.
| Crossref | GoogleScholarGoogle Scholar |
[16] M. Concepcion Gimeno, P. G. Jones, A. Laguna, C. Sarroca, J. Chem. Soc., Dalton Trans. 1998, 1277.
| Crossref | GoogleScholarGoogle Scholar |
[17] Y. M. Klein, A. Prescimone, E. C. Constable, C. E. Housecroft, Inorg. Chem. Commun. 2016, 70, 118.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpsVygsLY%3D&md5=056c833581514bb77837cf3e8543242eCAS |
[18] E. C. Constable, C. E. Housecroft, M. Neuburger, J. Schönle, S. Vujovic, J. A. Zampese, Polyhedron 2013, 60, 120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVensLvI&md5=c63dd369591248fd4f1f2413d96a1afbCAS |
[19] E. C. Constable, G. Zhang, E. Coronado, C. E. Housecroft, M. Neuburger, CrystEngComm 2010, 12, 2139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaitb3N&md5=099d9751189f65e2d8e063e43520ad4aCAS |
[20] E. C. Constable, C. E. Housecroft, S. Vujovic, J. A. Zampese, A. Crochet, S. R. Batten, CrystEngComm 2013, 15, 10068.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaktrzO&md5=e93f98c0235ac690a72896c24fb07450CAS |
[21] L. Xiao, L. Zhu, Q. Zeng, Q. Liu, J. Zhang, S. Li, H. Zhou, S. Zhang, J. Wu, Y. Tian, J. Organomet. Chem. 2015, 789–790, 22.
| Crossref | GoogleScholarGoogle Scholar |
[22] C. E. Housecroft, Dalton Trans. 2014, 43, 6594.and references therein
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls12mtbs%3D&md5=4316102925fe7231fa28750205c53963CAS | 24522847PubMed |
[23] Bruker Analytical X-ray Systems, Inc., APEX2, version 2 User Manual, M86–E01078 2006 (Bruker: Madison, WI).
[24] L. Palatinus, G. Chapuis, J. Appl. Cryst. 2007, 40, 786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslWqtrg%3D&md5=07d7ea8b1d2ffe64144318648a804fc6CAS |
[25] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Cryst. 2003, 36, 1487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFekt78%3D&md5=a9d7db80ae806851ebb7b50839017d55CAS |
[26] I. J. Bruno, J. C. Cole, P. R. Edgington, M. K. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor, Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 2002, 58, 389.
| Crossref | GoogleScholarGoogle Scholar |
[27] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gmtb0%3D&md5=25c5f4b24ba2ca3798a27faf06807d39CAS |
[28] A. L. Spek, Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvFejtw%3D%3D&md5=87d536ab3dc4302085f3c608899d7ef0CAS |
[29] I. R. Butler, S. J. McDonald, M. B. Hursthouse, K. M. A. Malik, Polyhedron 1995, 14, 529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlCmt7o%3D&md5=1eea20c1cfcda89adcc39248f558bc00CAS |
[30] T. M. Miller, K. J. Ahmed, M. S. Wrighton, Inorg. Chem. 1989, 28, 2347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktFKltLg%3D&md5=84036b90e783ff1bba99beb888794834CAS |
[31] C. E. Housecroft, CrystEngComm 2015, 17, 7461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVChtrfN&md5=0c0ef4ffcb32ad37ed03b9cb4e41e0f6CAS |
[32] Y. M. Klein, A. Prescimone, E. C. Constable, C. E. Housecroft, unpublished results.
[33] E. C. Constable, C. E. Housecroft, A. Prescimone, S. Vujovic, J. A. Zampese, CrystEngComm 2014, 16, 8691.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCitL7I&md5=5154b478fa339ddfa3b5266fef25ec48CAS |
[34] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, B72, 171.
| Crossref | GoogleScholarGoogle Scholar |
[35] E. C. Constable, C. E. Housecroft, B. M. Kariuki, N. Kelly, C. B. Smith, C. R. Chim. 2002, 5, 425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlWis74%3D&md5=81c42315556ebd63b5207fabc14ca869CAS |
[36] E. C. Constable, G. Zhang, C. E. Housecroft, J. A. Zampese, CrystEngComm 2011, 13, 6864.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2gu7zN&md5=c5c8e4f31d7a54fa35682a09ae1c0752CAS |
[37] J. Heine, J. S. auf der Gunne, S. Dehnen, J. Am. Chem. Soc. 2011, 133, 10018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVSjsbo%3D&md5=808f8a93cef8b79a6192334ddfc5b872CAS | 21657228PubMed |
[38] D. L. An, Y.-Q. Chen, Y. Tian, Z. Anorg. Allg. Chem. 2014, 640, 1776.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntl2ntbw%3D&md5=3ed2fa87f7d34fa66a91d146efd35e08CAS |
[39] E. C. Constable, C. E. Housecroft, J. R. Price, J. A. Zampese, CrystEngComm 2010, 12, 3163.
| Crossref | GoogleScholarGoogle Scholar |
[40] C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKmtb0%3D&md5=c7e12ae17806e51eaee71038f196ae78CAS |
[41] L. Xiao, Y. Tian, 2015, private communication to the CSD, refcode VUKMOF.