DNA Photocleavage and Binding Modes of Methylene Violet 3RAX and its Derivatives: Effect of Functional Groups
Ke Yang A , Xiong Zhang A , Fang Yang B , Fengshou Wu B C , Xiulan Zhang B and Kai Wang A B CA Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Wuhan 430073, China.
B Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China.
C Corresponding authors. Email: wfs42@126.com; kaiwang@wit.edu.cn
Australian Journal of Chemistry 70(7) 830-836 https://doi.org/10.1071/CH16496
Submitted: 7 September 2016 Accepted: 25 January 2017 Published: 20 February 2017
Abstract
With 4′-amino-N,N-diethylaniline and aniline as starting materials, methylene violet 3RAX 1 and its derivatives 2–5 were synthesised. The five compounds were characterised by IR, UV-vis, and 1H NMR spectroscopy and mass spectrometry. The binding mode between the synthesised compounds and DNA were investigated. The results show that both compounds 1 and 5 bind to DNA by an intercalative mode, while compounds 2–4 interact with DNA through a mixed binding mode involving groove binding and electrostatic interactions. The photocleavage ability of the five compounds to DNA were calculated to be 38, 40, 30, 20, and 13 %, respectively, when their concentration was adjusted to 400 μM. The singlet oxygen production of compounds measured by the 1,3-diphenylisobenzofuran method was consistent with the trend of DNA photocleavage ability. The DNA studies suggest that the binding mode between methylene violet 3RAX and DNA, the ability of methylene violet 3RAX to generate singlet oxygen, and the DNA photocleavage activity could be adjusted through modification of the amino group on methylene violet 3RAX.
References
[1] B. W. Henderson, V. H. Fingar, Cancer Res. 1987, 47, 3110.| 1:STN:280:DyaL2s3hsFKjtg%3D%3D&md5=2ebe5c307abd70c1528546a0104980dcCAS |
[2] Z. B. Xu, F. Q. Yu, F. S. Wu, H. Zhang, K. Wang, X. L. Zhang, J. Porphyr. Phthalocyanines 2015, 19, 1046.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1OqtbzK&md5=d24bb3463f2645765ca2e86ff55735a0CAS |
[3] Y. L. Zhao, D. Yin, Z. Gao, C. S. Xu, Laser J. 2008, 29, 81.(in Chinese).
[4] P. Juzenas, J. Moan, J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 29.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtV2nsbo%3D&md5=04dc8eda1a35b9aa720a25fdeac6fe77CAS |
[5] M. L. Lavaggi, M. Nieves, M. Cabrera, C. O. Azar, A. L. Cerain, A. Monge, H. Cerecetto, M. Gonzalez, Eur. J. Med. Chem. 2010, 45, 5362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Krt77P&md5=db328a030d99c30330ba30fbde12c45cCAS |
[6] M. L. Lavaggi, G. Aguirre, L. Boiani, L. Orelli, B. Garci, H. Cerecetto, M. Gonzalez, Eur. J. Med. Chem. 2008, 43, 1737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlOlsr0%3D&md5=2093e59262bc40deedcca5f2d6477badCAS |
[7] H. Cerecetto, M. Gonzalez, M. L. Lavaggi, A. Azqueta, A. L. Cerain, A. Monge, J. Med. Chem. 2005, 48, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSlur%2FF&md5=7379d25c21b1d2bf7c90041b81c743eeCAS |
[8] L. E. Myhren, G. Nygaard, G. Gausdal, H. Sletta, K. Teigen, K. F. Degnes, K. Zahlsen, A. Brunsvik, Ø. Bruserud, S. O. Døskeland, F. Selheim, L. Herfindal, Mar. Drugs 2013, 11, 332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1aksLg%3D&md5=36cf52d855c46dd68cf6662e37199e28CAS |
[9] G. B. Schuster, S. P. Schmidt, B. G. Dixon, J. Phys. Chem. 1980, 84, 1841.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXkvVeqt7o%3D&md5=0e30bbbff6128d474cddb70b99106767CAS |
[10] L. Yang, X. Zhang, W. S. Qu, J. L. Hua, Imaging Sci. Photochem. 2014, 32, 113.(in Chinese).
| 1:CAS:528:DC%2BC2cXpslSku7Y%3D&md5=6ffd878fcf96bb70a3a4339030319d0bCAS |
[11] J. B. Laursen, J. Nielsen, Chem. Rev. 2004, 104, 1663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht12gsbc%3D&md5=3ee9e0466af3d2bcf52cd6e3028ea50cCAS |
[12] A. Cimmino, A. Evidente, V. Mathieu, A. Andolfi, F. Lefranc, A. Kornienko, R. Kiss, Nat. Prod. Rep. 2012, 29, 487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Wkur8%3D&md5=b1da52790c03ce82b63674a92e650fbcCAS |
[13] I. Saha, G. S. Kumar, Dyes Pigments 2013, 96, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVams73J&md5=b348ab23cbcd9e04c56fb89096b371e4CAS |
[14] Z. Wojnarowska, K. Adrjanowicz, P. Wlodarczyk, E. Kaminska, K. Kaminski, J. Phys. Chem. B 2009, 113, 12536.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaisbfE&md5=d83e58653238d5726d1bd2b5a15e1be0CAS |
[15] B. Polat, H. Suleyman, H. H. Alp, Chem. Biol. Interact. 2010, 186, 82.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGnurk%3D&md5=f3ad72432a0ea5b7d7419ce00dd37d00CAS |
[16] M. E. Reichmann, S. A. Rice, C. A. Thomas, P. Doty, J. Am. Chem. Soc. 1954, 76, 3047.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXmtVKmsg%3D%3D&md5=da1b8a231e3a04d1c7c60639a2476ffdCAS |
[17] Y. M. Zheng, K. Wang, T. Li, X. L. Zhang, Z. Y. Li, Molecules 2011, 16, 3488.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFemt78%3D&md5=631031afdd8ca3d2620fb0c0cd38d9fbCAS |
[18] K. Wang, C. T. Poon, C. Y. Choi, W.-K. Wong, D. W. J. Kwong, F. Q. Yu, H. Zhang, Z. Y. Li, J. Porphyr. Phthalocyanines 2012, 16, 85.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFCqsr8%3D&md5=d9938f00d8f769c4441ea020c8d93c55CAS |
[19] K. Wang, C. T. Poon, W. K. Wong, W. Y. Wong, D. W. J. Kwong, H. Zhang, Z. Y. Li, Eur. J. Inorg. Chem. 2009, 922.
| Crossref | GoogleScholarGoogle Scholar |
[20] Wang K., Song S. H., Chen Y., Yu F., Chi R., Huang T., Synthesizing process of Janus green B. ZL 201210047336.4. 2014-04-30.
[21] K. M. Sovenyhazy, J. A. Bordelon, J. T. Petty, Nucleic Acids Res. 2003, 31, 2561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslWhtbg%3D&md5=a067cd7a5fc3324475edf7ddd7e20134CAS |
[22] K. Wang, X. Lin, X. Wan, T. Jia, X. L. Zhang, H. Zhang, X. L. Ju, Chem. J. Chin. Univ. 2012, 33, 2663.(in Chinese).
| 1:CAS:528:DC%2BC3sXkt1SqsL8%3D&md5=68b2e3b1938e26bb388faa6ab4945527CAS |
[23] Z. Xue, A. X. Hou, D. W. J. Kwong, W. K. Wong, Bioorg. Med. Chem. Lett. 2007, 17, 4266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVKntbk%3D&md5=703783416fd636c4d1b5857c51c8356cCAS |
[24] H. T. Wang, T. T. Hu, Q. L. Zhang, J. H. Liu, X. Z. Ren, C. H. Li, F. Wang, P. X. Zhang, Acta Chim. Sin. 2008, 66, 1565.(in Chinese).
| 1:CAS:528:DC%2BD1cXpt1WisLg%3D&md5=8990c3f2184148ca916a33d4dd2b6d74CAS |
[25] Y. M. Song, X. R. Zheng, J. X. Wu, Q. Wu, J. Northwest Norm. Univ., Nat. Sci. 2006, 42, 63.(in Chinese).
| 1:CAS:528:DC%2BD28Xht1WqsbvK&md5=906469b768bf6aa72c812123b8c5cacdCAS |
[26] E. I. Kochevar, W. R. Redmond, Methods Enzymol. 2000, 319, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsl2lsbo%3D&md5=98bcd672e6d7ff20ac9499f103f09300CAS |
[27] K. Wang, T. P. Chun, Y. C. Chun, K. W. Wai, W. J. K. Daniel, F. Q. Yu, H. Zhang, Z. Y. Li, J. Porphyr. Phthalocyanines 2012, 16, 85.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFCqsr8%3D&md5=d9938f00d8f769c4441ea020c8d93c55CAS |