Improved Extraction Yield of Citral from Lemon Myrtle Using a Cellulose-Dissolving Ionic Liquid
Koki Munakata A , Masahiro Yoshizawa-Fujita A , Masahiro Rikukawa A and Toyonobu Usuki A BA Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
B Corresponding author. Email: t-usuki@sophia.ac.jp
Australian Journal of Chemistry 70(6) 699-704 https://doi.org/10.1071/CH16460
Submitted: 4 August 2016 Accepted: 7 October 2016 Published: 4 November 2016
Abstract
Lemon myrtle is the richest natural source of citral, which has potential medicinal applications. In this study, citral was extracted from lemon myrtle using cellulose-dissolving ionic liquids (ILs), 1-ethyl-3-methylimidazolium methylphosphonate ([C2mim][(MeO)(H)PO2]), N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium chloride ([DEME]Cl), and N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium 2-methoxyacetate ([DEME][MOAc]). The extraction yield of citral obtained using ILs was up to 2.1 times higher than that obtained using ethanol. The ILs could be recycled and reused nine times for the extraction of citral. The present method provides a greener process when compared with conventional approaches and may be applicable for the extraction of other natural products.
References
[1] A. Buchaillot, N. Caffin, B. Bhandari, Drying Technol. 2009, 27, 445.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtF2ktb0%3D&md5=0d8910d5dc968f4dde80231c396c3292CAS |
[2] T. Horn, A. Barth, M. Rühle, A. Häser, G. Jürges, P. Nick, Eur. Food Res. Technol. 2012, 234, 853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFeqtrc%3D&md5=6e9b8436dd3f1751d49cd258c8e14f13CAS |
[3] For example, lemon myrtle leaves are used to make tea: Chikiriya, http://www.kyo-chikiriya.com/english/ (accessed 4 August 2016).
[4] E. V. Lassak, Revision of Backhousia citriodora Essential Oil Standard. RIRDC Publication 11, No. 11/137 2012 (Rural Industries Research and Development Corporation: ACT)
[5] B. E. Burke, J. E. Baillie, R. D. Olson, Biomed. Pharmacother. 2004, 58, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Wksrg%3D&md5=96bc38ffe0ec293a498a311c9373a2f8CAS | 15183850PubMed |
[6] S. Pattnaik, V. R. Subramanyam, M. Bapaji, C. R. Kole, Microbios 1997, 89, 39.
| 1:CAS:528:DyaK2sXkt1emtbw%3D&md5=0a6962d2f0af984ba25d1df4dc1162d5CAS | 9218354PubMed |
[7] W. Chaouki, D. Y. Leger, B. Liagre, J. L. Beneytout, M. Hmamouchi, Fundam. Clin. Pharmacol. 2009, 23, 549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SrtL7M&md5=ebf3f272b1d9791262084d7ce51b8fdaCAS | 19656204PubMed |
[8] H. Xia, W. Liang, Q. Song, X. Chen, X. Chen, J. Hong, Cytotechnology 2013, 65, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvVersQ%3D%3D&md5=92c36a53ea121dcc5df74c0d566f66f2CAS | 22573288PubMed |
[9] H. Ohno, Y. Fukaya, Chem. Lett. 2009, 38, 2.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wms78%3D&md5=671be3b75b623b3ec07494975be10af8CAS |
[10] N. Sun, H. Rodríquez, M. Rahman, R. D. Rogers, Chem. Commun. 2011, 47, 1405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Ciuw%3D%3D&md5=f66516235eadef60eb02408bc0a01e40CAS |
[11] Y. Dai, J. van Spronsen, G.-J. Witkamp, R. Verpoorte, Y. H. Choi, J. Nat. Prod. 2013, 76, 2162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaksb7O&md5=093b73d6e566a89523212e55035118c3CAS | 24188074PubMed |
[12] Y. Fukaya, K. Hayashi, M. Wada, H. Ohno, Green Chem. 2008, 10, 44.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCruw%3D%3D&md5=c5fc65eac35ccb1547b9bf0736053e09CAS |
[13] T. Usuki, N. Yasuda, M. Yoshizawa-Fujita, M. Rikukawa, Chem. Commun. 2011, 47, 10560.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyqtLzE&md5=27e31f0087e516a60c6d5f8090792344CAS |
[14] S. Onda, T. Usuki, M. Yoshizawa-Fujita, M. Rikukawa, Chem. Lett. 2015, 44, 1461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjt1GhsLY%3D&md5=7860243a2dd8978723d7987f8ce5ec69CAS |
[15] K. Bica, P. Gaertner, R. D. Rogers, Green Chem. 2011, 13, 1997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslGiu7w%3D&md5=d5cefd0642ac5faef44430484436fb54CAS |
[16] T. Liu, X. Sui, R. Zhang, L. Yang, Y. Zu, L. Zhang, Y. Zhang, Z. Zhang, J. Chromatogr. A 2011, 1218, 8480.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2rtrnI&md5=56009f27f2bfe0f566c26c5a3f12d9ccCAS | 21999917PubMed |
[17] (a) G. Masuda, Y. Kubota, Y. Oshima, WIPO Patent WO2007049485A1 2007.
(b) K. Iwasaki, T. Ito, Japanese Patent JP2013194147A 2013.
[18] Y. Koga, S. Sakugawa, US Patent US2016009669A1 2016.
[19] Tomy Green Farm For information on lemon myrtle see: http://www.geocities.jp/tomi19930410/index.html (accessed 4 August 2016).
[20] H. Wen, N. Aoki, R. Ohsugi, Trop. Agr. Dev. 2012, 56, 14.
| 1:CAS:528:DC%2BC38XovVWhsLk%3D&md5=aa879361c6b49a1979d59c5e6dcc086bCAS |
[21] B. T. Schaneberg, I. A. Khan, J. Agric. Food Chem. 2002, 50, 1345.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVOmsg%3D%3D&md5=2e7368911c5b3abd13de0b45708cc126CAS | 11879000PubMed |
[22] B. González, N. Calvar, E. Gómez, Á. Domínguez, J. Chem. Thermodyn. 2007, 39, 1578.
| Crossref | GoogleScholarGoogle Scholar |