Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of a Tetraphenylethene-Substituted Tetrapyridinium Salt with Multifunctionality: Mechanochromism, Cancer Cell Imaging, and DNA Marking

Anushri Rananaware A , Amanda N. Abraham A , Duong Duc La A , Vishal Mistry A , Ravi Shukla A B and Sheshanath V. Bhosale A B
+ Author Affiliations
- Author Affiliations

A School of Science, RMIT University, GPO Box 2476, Melbourne, Vic. 3001, Australia.

B Corresponding authors. Email: ravi.shukla@rmit.edu.au; sheshanath.bhosale@rmit.edu.au

Australian Journal of Chemistry 70(6) 652-659 https://doi.org/10.1071/CH16459
Submitted: 4 August 2016  Accepted: 7 September 2016   Published: 5 October 2016

Abstract

The development of functional materials is a crucial step in the development of newer and better technologies. The development of efficient luminescent materials, whose potential lie in applications in fields such as electronics, optics, data storage, and biological sciences, through simple synthetic procedures is therefore of interest. Herein, we report the synthesis of a tetrapyridinium-tetraphenylethylene (TPy-TPE) luminogen with multiple functionalities. TPy-TPE displayed characteristic features of an aggregation-induced emission material being weakly emissive in solution, but strongly emissive when aggregated and in the solid state. The solid-state emission of TPy-TPE can be reversibly switched between green and yellow by grinding–fuming/heating processes with a high contrast due to a transformation from a crystalline to an amorphous state and vice versa. TPy-TPE also works as a good fluorescent visualiser for specific staining for cellular imaging and as a DNA marker.


References

[1]  L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 2011, 23, 926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kjtb8%3D&md5=56b116a979383efa41ca53d85a12cc23CAS | 21031450PubMed |

[2]  C. Zhang, Y. Yan, Y.-Y. Jing, Q. Shi, Y. S. Zhao, J. Yao, Adv. Mater. 2012, 24, 1703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslClurg%3D&md5=9d8ce86021c21443299fa3a9a3807387CAS | 22308167PubMed |

[3]  M.-J. Teng, X.-R. Jia, S. Yang, X.-F. Chen, Y. Wei, Adv. Mater. 2012, 24, 1255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCit7w%3D&md5=9ccc976ac41d3aac3d71c57159e0c458CAS | 22298129PubMed |

[4]  E. De Meulenaere, W.-Q. Chen, S. Van Cleuvenbergen, M.-L. Zheng, S. Psilodimitrakopoulos, R. Paesen, J.-M. Taymans, M. Ameloot, J. Vanderleyden, P. Loza-Alvarez, X.-M. Duan, K. Clays, Chem. Sci. 2012, 3, 984.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Omsrc%3D&md5=f2bc981dac6cfbf9bb36a64107837b41CAS |

[5]  K. Ariga, K. Minami, M. Ebara, J. Nakanishi, Polym. J. 2016, 48, 371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xltlyit7Y%3D&md5=7b198d1e28f95940f891621c49b8f66dCAS |

[6]  K. Ariga, T. Mori, J. P. Hill, Adv. Mater. 2012, 24, 158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1equ7bO&md5=bd7ef8505b1617f81b10ec985f1e9fd8CAS | 21953700PubMed |

[7]  J. Liu, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2009, 109, 5799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvV2gur0%3D&md5=e20848e3eca9ef576c862fa50be88b80CAS | 19678641PubMed |

[8]  A. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1emu7o%3D&md5=75c0b69b4bd4f97f3867a37ced146053CAS | 19228015PubMed |

[9]  J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFCitrw%3D&md5=dc8d624448eec24ae391eb4c2b1b56abCAS |

[10]  J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslCmtLc%3D&md5=954d38a3d440492e233f31b73fa34a66CAS |

[11]  Z. J. Zhao, S. M. Chen, J. W. Y. Lam, Z. M. Wang, P. Lu, F. Mahtab, H. H. Y. Sung, I. D. Williams, Y. G. Ma, H. S. Kwok, B. Z. Tang, J. Mater. Chem. 2011, 21, 7210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsV2gtbw%3D&md5=dce01b653a7d2276767463c92bf44f99CAS |

[12]  Z. J. Zhao, J. L. Geng, Z. F. Chang, S. M. Chen, C. M. Deng, T. Jiang, W. Qin, J. W. Y. Lam, H. S. Kwok, H. Y. Qiu, B. Liu, B. Z. Tang, J. Mater. Chem. 2012, 22, 11018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFaqur4%3D&md5=6c5c2ef6b7fa9c737ce3c2b58f53150aCAS |

[13]  J. Huang, X. Yang, J. Wang, C. Zhong, L. Wang, J. Qin, Z. Li, J. Mater. Chem. 2012, 22, 2478.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslyksw%3D%3D&md5=7ce8f65f9fec7e177563267523e25e7fCAS |

[14]  J. Huang, N. Sun, J. Yang, R. Tang, Q. Li, D. Ma, J. Qin, Z. Li, J. Mater. Chem. 2012, 22, 12001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1SmsbY%3D&md5=b9f94c18248c820cac82ab973e84851dCAS |

[15]  H. Shi, J. Liu, J. Geng, B. Z. Tang, B. Liu, J. Am. Chem. Soc. 2012, 134, 9569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsF2ns7w%3D&md5=3c83a9ae79fc669fc83ca9330dfe2d27CAS | 22642547PubMed |

[16]  Y. Liu, Y. H. Tang, N. N. Barashkov, I. S. Irgibaeva, J. W. Y. Lam, R. R. Hu, D. Birimzhanova, Y. Yu, B. Z. Tang, J. Am. Chem. Soc. 2010, 132, 13951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygsLjO&md5=82a68fc85153da8db8d93c8180e14cd6CAS | 20853831PubMed |

[17]  M. Wang, G. Zhang, D. Zhang, D. Zhu, B. Z. Tang, J. Mater. Chem. 2010, 20, 1858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitleit7c%3D&md5=d78a3c01e77e092357b19242b814eaffCAS |

[18]  C. Y.-S. Chung, V. W.-W. Yam, J. Am. Chem. Soc. 2011, 133, 18775.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOqu7vN&md5=5b4fc6fcc44f2ea9410f917e56ac5184CAS |

[19]  J. Wu, W. Liu, J. Ge, H. Zhang, P. Wang, Chem. Soc. Rev. 2011, 40, 3483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12nu70%3D&md5=b67512cc5b7465d958503964d9ca1b5bCAS | 21445455PubMed |

[20]  C. Li, T. Wu, C. Hong, G. Zhang, S. Liu, Angew. Chem. Int. Ed. 2012, 51, 455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGkt7bP&md5=41a6589732815b6dd99d6b64856944f3CAS |

[21]  C. W. T. Leung, Y. Hong, S. Chen, E. Zhao, J. W. Y. Lam, B. Z. Tang, J. Am. Chem. Soc. 2013, 135, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCqsrjF&md5=257b5e1896b2036554a4d557ef785963CAS |

[22]  Y. Yu, C. Feng, Y. Hong, J. Liu, S. Chen, K. M. Ng, K. Q. Luo, B. Z. Tang, Adv. Mater. 2011, 23, 3298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlOqt7g%3D&md5=832b2b7c8fc15dc83a060aab75c9ac79CAS | 21671445PubMed |

[23]  H. Lu, F. Su, Q. Mei, Y. Tian, W. Tian, R. H. Johnson, D. R. Meldrum, J. Mater. Chem. 2012, 22, 9890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFGjtrs%3D&md5=497dfeeb75f167b006a2f4e0cb523121CAS | 23397360PubMed |

[24]  A. Rananaware, D. D. La, S. V. Bhosale, RSC Adv. 2015, 5, 63130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFGnsbbL&md5=41f472229cb945af2e7798a406804908CAS |

[25]  A. Rananaware, D. D. La, S. M. Jackson, S. V. Bhosale, RSC Adv. 2016, 6, 16250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFymtb8%3D&md5=a4728009575fb671c41db999ed7e076cCAS |

[26]  A. Rananaware, R. S. Bhosale, K. Ohkubo, H. Patil, L. A. Jones, S. L. Jackson, S. Fukuzumi, S. V. Bhosale, S. V. Bhosale, J. Org. Chem. 2015, 80, 3832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFGhu74%3D&md5=5271590535a57bc06d972b0429dc37f3CAS | 25822257PubMed |

[27]  A. Rananaware, D. D. La, S. V. Bhosale, RSC Adv. 2015, 5, 56270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVyhsbvF&md5=accbd6bf3b55c605aca8e4c56cdefdf5CAS |

[28]  S. L. Jackson, A. Rananaware, C. Rix, S. V. Bhosale, K. Latham, RSC Adv. 2015, 5, 84134.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFKrsr3J&md5=7fb929b46a49f20ae43a7aca19e3c589CAS |

[29]  Anuradha D. D., La M., Al Kobaisi S. V., Bhosale, Sci. Rep. 2015, 5, 15652.

[30]  T. Han, X. Feng, B. Tong, J. Shi, L. Chen, J. Zhi, Y. Dong, Chem. Commun. 2012, 48, 416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFygur7O&md5=bc524bdd00856de09580c6e84c4d6caeCAS |

[31]  Z. Shi, J. Davies, S.-H. Jang, W. Kaminsky, A. K.-Y. Jen, Chem. Commun. 2012, 48, 7880.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSlsbrM&md5=61861d899e9433a23bf3e9c0b52339c4CAS |

[32]  J. Liu, H. Su, L. Meng, Y. Zhao, C. Deng, J. C. Y. Ng, P. Lu, M. Faisal, J. W. Y. Lam, X. Huang, H. Wu, K. S. Wong, B. Z. Tang, Chem. Sci. 2012, 3, 2737.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWns7rF&md5=d56a1666bd0d633798c91ad3a2f05c25CAS |

[33]  J. Huang, N. Sun, J. Yang, R. Tang, Q. Li, D. Ma, J. Qin, Z. Li, J. Mater. Chem. 2012, 22, 12001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1SmsbY%3D&md5=b9f94c18248c820cac82ab973e84851dCAS |

[34]  X. Wang, A. R. Morales, T. Urakami, L. Zhang, M. V. Bondar, M. Komatsu, K. D. Belfield, Bioconjug. Chem. 2011, 22, 1438.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Cltrc%3D&md5=575d353bd1cd750d24fd658b000728d3CAS | 21688841PubMed |

[35]  Z. Guo, W. Zhu, H. Tian, Chem. Commun. 2012, 48, 6073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFGhsbY%3D&md5=8b4fe3ea3a2a020bffd457d7431d537fCAS |

[36]  J.-A. Richard, M. Massonneau, P.-Y. Renard, A. Romieu, Org. Lett. 2008, 10, 4175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVymtL%2FM&md5=326278e461d2e9d407405ebaf043f2d8CAS | 18763801PubMed |

[37]  Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899.
         | Crossref | GoogleScholarGoogle Scholar | 14531716PubMed |

[38]  R. R. Hu, E. Lager, A. Aguilar-Aguilar, J. Z. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. C. Zhong, K. S. Wong, E. Pena-Cabrera, B. Z. Tang, J. Phys. Chem. C 2009, 113, 15845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSgt7bI&md5=19166d1639d968e0dc055300bfbddc46CAS |

[39]  N. Zhao, Z. Yang, J. W. Y. Lam, H. H. Y. Sung, N. Xie, S. Chen, H. Su, M. Gao, I. D. Williams, K. S. Wong, B. Z. Tang, Chem. Commun. 2012, 48, 8637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFChurfE&md5=f6564495bed6dc1c8e7f45ac01709ab9CAS |

[40]  C. Weder, J. Mater. Chem. 2011, 21, 8235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOlsrs%3D&md5=d3b88ed6bc97c03b1cf19716bdaafdd1CAS |

[41]  G. Q. Zhang, J. W. Lu, M. Sabat, C. L. Fraser, J. Am. Chem. Soc. 2010, 132, 2160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Snsr8%3D&md5=40b36ba994add8705e7245d4a656c5c5CAS |

[42]  Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, J. Xu, Chem. Soc. Rev. 2012, 41, 3878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1yksbg%3D&md5=5221f7a17fa521434b0857e2d88de419CAS | 22447121PubMed |

[43]  R. T. K. Kwok, C. W. T. Leung, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2015, 44, 4228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVOmsLvJ&md5=9b1005bcd23153870f8ad446756fa824CAS |

[44]  X. Luo, J. Li, C. Li, L. Heng, Y. Q. Dong, Z. Liu, Z. Bo, B. Z. Tang, Adv. Mater. 2011, 23, 3261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1CksL4%3D&md5=cbfc1aa38b1806fd0c0bd58a81abb412CAS | 21678499PubMed |

[45]  Z. Zhang, B. Xu, J. Su, L. Shen, Y. Xie, H. Tian, Angew. Chem. Int. Ed. 2011, 50, 11654.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWltbzO&md5=47b7155d74950ddfdf9830bf1836e2dcCAS |

[46]  J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs12qtbfK&md5=cba3ea2a698f597b1e424bf76b58adfaCAS | 26492387PubMed |

[47]  Y. J. Wang, Z. Li, J. Tong, X. Y. Shen, A. Qin, J. Z. Sun, B. Z. Tang, J. Mater. Chem. 2015, 3, 3559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsVGltrg%3D&md5=dfd398186d731fc52c31f8eb354a716aCAS |

[48]  T. S. Reddy, H. Kulhari, V. G. Reddy, V. Bansal, A. Kamal, R. Shukla, Eur. J. Med. Chem. 2015, 101, 790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Glsb3I&md5=03d4d3e116ce4de2170bb5480cdce452CAS | 26231080PubMed |

[49]  T. S. Reddy, H. Kulhari, V. G. Reddy, A. V. Subba Rao, V. Bansal, A. Kamal, R. Shukla, Org. Biomol. Chem. 2015, 13, 10136.
         | Crossref | GoogleScholarGoogle Scholar |