Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Preparation and Characterization of PA6-PEG/Li High Performance Static Dissipation Composites

Chongling Yang A D , Shouzai Tan A , Gengen Chen C and Litao Guan B D E
+ Author Affiliations
- Author Affiliations

A Department of Chemical Engineering, Guangdong Industry Technical College, Guangzhou 510300, China.

B College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.

C School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.

D Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.

E Corresponding author. Email: ltguan@scau.edu.cn

Australian Journal of Chemistry 70(6) 669-676 https://doi.org/10.1071/CH16288
Submitted: 12 May 2016  Accepted: 23 September 2016   Published: 19 October 2016

Abstract

A copolymer of PA6 (polyamide 6) and PEG (polyethylene glycol) was synthesized by a condensation reaction. The optimal reaction conditions were determined as the following: a reaction temperature of 255°C, –0.04 MPa vacuum, and a condensation time of 40 min. A series of novel PA6-PEG/Li composites were developed by melt blending the PA6-PEG copolymer (10 wt-% PEG) with three different kinds of colourless lithium salts (LiCl, C18H35LiO2, LiAc). FT-IR, NMR, thermogravimetric (TGA), electronic universal testing, and resistivity analyses were employed to investigate the comprehensive properties of the copolymers and composites. The results of FT-IR and 1H NMR analyses revealed that the PEG was copolymerized with PA6 successfully. TGA results indicated that the decomposition temperature of the PA6-PEG copolymer was above 350°C. Resistivity testing revealed that the surface resistivity (Rs) of the copolymer decreased from 1 × 1014 to 5.67 × 109 Ω square–1 with an increase of the content of PEG. The PA6-PEG/LiCl composite showed an excellent static dissipation performance of 2.71 × 108 Ω square–1.


References

[1]  Q. J. Xu, X. H. Li, Z. J. Zhang, J. Iran. Chem. Soc. 2014, 11, 1717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVSiur%2FL&md5=22b73129359753648700b7fab1591536CAS |

[2]  V. V. Zuev, Y. G. Ivanova, Polym. Eng. Sci. 2012, 52, 1206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12gtrvI&md5=c7adf8a8145dcd52e8dea82170b422daCAS |

[3]  Q. F. Wei, H. F. Wang, Y. Xu, B. Y. Deng, J. Coat. Technol. Res. 2010, 7, 511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsl2mu74%3D&md5=fa409a9138eea07eb855097aa578a5a1CAS |

[4]  X. Jin, C. F. Xiao, W. Y. Wang, Mater. Sci. Technol. 2010, 26, 1453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2msrvF&md5=23355294d7c345c64bad2898f3cbac67CAS |

[5]  G. Gorrasi, S. Bredeau, C. Di Candia, G. Patimo, S. De Pasquale, P. Dubois, Macromol. Mater. Eng. 2011, 296, 408.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFGjtbc%3D&md5=d3e13296ba53ba240a02c2a44947c639CAS |

[6]  S. T. Zhou, W. Luo, H. W. Zou, M. Liang, S. Z. Li, J. Compos. Mater. 2016, 50, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XosFCksr4%3D&md5=e832689e07586a2d15e0b5e5ade5d283CAS |

[7]  H. Z. He, S. W. Cheng, Y. Q. Lian, Y. Xing, G. J. He, Z. X. Huang, M. C. Wu, J. Appl. Polym. Sci. 2015, 132, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  L. L. Hou, H. Z. Liu, G. S. Yang, Polym. Eng. Sci. 2006, 46, 1196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFKrsL8%3D&md5=da5f554fe0d2b2a1d701626f41d5c510CAS |

[9]  Y. S. Fu, J. K. Wang, G. Zhao, Y. X. Wang, S. J. Chen, J. Appl. Polym. Sci. 2011, 122, 12.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFCnurw%3D&md5=8dfdf6e1bcc8dd7df51e962aa2a8fd3dCAS |

[10]  W. Q. Yang, J. L. Wang, J. X. Lei, Polym. Eng. Sci. 2010, 50, 739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1Kms7Y%3D&md5=bee0a954cde35cbb4fe42bbc286a0d8dCAS |

[11]  L. L. Hou, H. Z. Liu, G. S. Yang, Polym. Eng. Sci. 2006, 46, 1196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFKrsL8%3D&md5=da5f554fe0d2b2a1d701626f41d5c510CAS |

[12]  M. Peyravi, A. A. Babaluo, M. A. Ardestani, M. K. R. Aghjeh, S. R. Pishghadam, P. Hadi, J. Appl. Polym. Sci. 2010, 118, 1211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCmsr8%3D&md5=de14a56c1bfcb3f9f3ce3ba2e7882f22CAS |

[13]  M. Niesten, J. Feijen, R. J. Gaymans, Polymer 2000, 41, 8487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1Kitr8%3D&md5=f05b14cd4edc75be71a4b2ebaf60ec70CAS |

[14]  W. Haojian, Study on the Preparation and Structure-Property of Thermoplastic Polyamide-6 Elastomer 2010, Ph.D. thesis, Donghua University, China.

[15]  S. Z. C. P. D. Y. J. Zhao, China Synthetic Rubber Industry 2003, 26, 40.
         | 1:CAS:528:DC%2BD3sXntVWgsrg%3D&md5=b24c24a9c17ac9d025a35a970e10f124CAS |

[16]  Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, Appl. Energy 2011, 88, 981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFKq&md5=8755b82327d332210955fcaa5e410552CAS |

[17]  W. S. Young, J. N. L. Albert, A. B. Schantz, T. H. Epps, Macromolecules 2011, 44, 8116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sltb7L&md5=39bd0435eb14525a4da676af27729671CAS |

[18]  A. M. Christie, S. J. Lilley, E. Staunton, Y. G. Andreev, P. G. Bruce, Nature 2005, 433, 50.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFCi&md5=04a8d93c0f3f2508e9558d00806e432dCAS | 15635406PubMed |

[19]  R. K. Gupta, H. W. Rhee, Electrochim. Acta 2012, 76, 159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptl2ktrw%3D&md5=fedea5a535b765da013fafb154f03339CAS |

[20]  Z. Pan, Macromolecule Chemistry 2007 (Chemical Industry Press: Beijing).

[21]  X. Li, R. T. Liu, L. L. Zhong, L. X. Gu, J. Appl. Polym. Sci. 2003, 89, 1696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Ght70%3D&md5=153e5a8286ebf98eb09dde00725097d2CAS |

[22]  S. G. Wang, Z. Y. Zhang, Z. Z. Dong, Q. H. Yuan, Z. H. Song, C. F. Xiao, J. Polym. Res. 2008, 15, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCltQ%3D%3D&md5=110979aa610c8e6403e89b6fcc9d6131CAS |

[23]  N. Mahmood, M. Islam, A. Hameed, S. Saeed, Polymers 2013, 5, 1380.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  W. B. Kong, B. Wu, Y. Liu, D. Y. Guo, J. X. Lei, Soft Mater. 2016, 14, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVeis78%3D&md5=98152f9aceee895db09129dc1c79c294CAS |

[25]  F. Bertasi, K. Vezzu, E. Negro, S. Greenbaum, V. Di Noto, Int. J. Hydrogen Energy 2014, 39, 2872.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKgtL3P&md5=d04718660a90023c77d664d62a2624edCAS |

[26]  J. L. Wang, W. Q. Yang, J. X. Lei, Polym. Eng. Sci. 2010, 50, 57.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  Z. J. Xiong, X. N. Li, Q. X. Jia, Z. Y. Fu, Z. K. Yang, Gaofenzi Xuebao 2010, 010, 1003.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  G. F. Wei, D. B. Hua, L. X. Gu, J. Appl. Polym. Sci. 2006, 101, 3330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVejt7Y%3D&md5=3d705754b8ae176c3f65f3185f8d7a75CAS |