Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT (Open Access)

Energetics of the Proton Transfer Pathway for Tyrosine D in Photosystem II

Keisuke Saito A B C , Naoki Sakashita A and Hiroshi Ishikita A B
+ Author Affiliations
- Author Affiliations

A Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.

B Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

C Corresponding author. Email: ksaito@appchem.t.u-tokyo.ac.jp

Australian Journal of Chemistry 69(9) 991-998 https://doi.org/10.1071/CH16248
Submitted: 19 April 2016  Accepted: 29 May 2016   Published: 4 July 2016

Abstract

The proton transfer pathway for redox active tyrosine D (TyrD) in photosystem II is a hydrogen-bond network that involves D2-Arg180 and a series of water molecules. Using quantum mechanical/molecular mechanical calculations, the detailed properties of the energetics and structural geometries were investigated. The potential-energy profile of all hydrogen bonds along the proton transfer pathway indicates that the overall proton transfer from TyrD is energetically downhill. D2-Arg180 plays a key role in the proton transfer pathway, providing a driving force for proton transfer, maintaining the hydrogen-bond network structure, stabilising P680•+, and thus deprotonating TyrD-OH to TyrD-O. A hydrophobic environment near TyrD enhances the electrostatic interactions between TyrD and redox active groups, e.g. P680 and the catalytic Mn4CaO5 cluster: the redox states of those groups are linked with the protonation state of TyrD, i.e. release of the proton from TyrD. Thus, the proton transfer pathway from TyrD may ultimately contribute to the conversion of S0 into S1 in the dark in order to stabilise the Mn4CaO5 cluster when the photocycle is interrupted in S0.


References

[1]  (a) H. Dau, I. Zaharieva, M. Haumann, Curr. Opin. Chem. Biol. 2012, 16, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Kjsbs%3D&md5=8d738a238ccd734da0822948379004f8CAS | 22387134PubMed |
      (b) N. Cox, J. Messinger, Biochim. Biophys. Acta 2013, 1827, 1020.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 2011, 473, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCmtLg%3D&md5=abc7a38ea3183ce0a96d876da0716e61CAS | 21499260PubMed |
      (b) M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.-R. Shen, Nature 2015, 517, 99.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  K. Saito, J.-R. Shen, T. Ishida, H. Ishikita, Biochemistry 2011, 50, 9836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KktrrO&md5=52e20db6b95410e9cdab589b3938a22aCAS | 21972783PubMed |

[4]  (a) A. Warshel, A. Papazyan, P. A. Kollman, Science 1995, 269, 102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsl2isr4%3D&md5=ced73e9a477bd756c6b9ab07a165483aCAS | 7661987PubMed |
      (b) C. L. Perrin, J. B. Nielson, Annu. Rev. Phys. Chem. 1997, 48, 511.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) R. Ahlbrink, M. Haumann, D. Cherepanov, O. Bogershausen, A. Mulkidjanian, W. Junge, Biochemistry 1998, 37, 1131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFOhtw%3D%3D&md5=282129d2a945d83d03c28483271c8e04CAS | 9454606PubMed |
      (b) A.-M. A. Hays, I. R. Vassiliev, J. H. Golbeck, R. J. Debus, Biochemistry 1999, 38, 11851.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Rappaport, J. Lavergne, Biochim. Biophys. Acta 2001, 1503, 246.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Nakamura, R. Nagao, R. Takahashi, T. Noguchi, Biochemistry 2014, 53, 3131.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) C. Tommos, L. Davidsson, B. Svensson, C. Madsen, W. Vermaas, S. Styring, Biochemistry 1993, 32, 5436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitlSgtbc%3D&md5=ef38dbcd45b4be9838bd1bc917c5465eCAS | 8388721PubMed |
      (b) X. S. Tang, D. A. Chisholm, G. C. Dismukes, G. W. Brudvig, B. A. Diner, Biochemistry 1993, 32, 13742.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. Nakamura, T. Noguchi, Biochemistry 2015, 54, 5045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1KkurfF&md5=8bbb13dd6c55e867037655f0fd635461CAS | 26241205PubMed |

[8]  H. Ishikita, E. W. Knapp, Biophys. J. 2006, 90, 3886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltF2mtro%3D&md5=b57226a5c93d7043d2fd3f23855564d2CAS | 16513785PubMed |

[9]  K. Saito, A. W. Rutherford, H. Ishikita, Proc. Natl. Acad. Sci. USA 2013, 110, 7690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFWqsr0%3D&md5=971c0ed896199a7917841bba54eaa8f1CAS | 23599284PubMed |

[10]     (a) A. W. Rutherford, W. Nitschke, in Origin and Evolution of Biological Energy Conversion (Ed. H. Baltscheffsky) 1996, pp. 143–176 (Wiley-VCH: New York, NY).
      (b) A. W. Rutherford, P. Faller, Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 245.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  P. Manna, R. LoBrutto, C. Eijckelhoff, J. P. Dekker, W. Vermaas, Eur. J. Biochem. 1998, 251, 142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvV2ltQ%3D%3D&md5=159153a057579a36f3c0e77b37b88849CAS | 9492278PubMed |

[12]  A. A. Stuchebrukhov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2009, 79, 031927.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  K. Saito, T. Ishida, M. Sugiura, K. Kawakami, Y. Umena, N. Kamiya, J.-R. Shen, H Ishikita, J. Am. Chem. Soc. 2011, 133, 14379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVegt7rE&md5=a7a89c8386fc52c3608f8c156c1a3299CAS | 21805998PubMed |

[14]  (a) G. T. Babcock, B. A. Barry, R. J. Debus, C. W. Hoganson, M. Atamian, L. McIntosh, I. Sithole, C. F. Yocum, Biochemistry 1989, 28, 9557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVOn&md5=2cc2522bae8b437f6ba784a34999de3eCAS | 2692711PubMed |
      (b) P. Faller, R. J. Debus, K. Brettel, M. Sugiura, A. W. Rutherford, A. Boussac, Proc. Natl. Acad. Sci. USA 2001, 98, 14368.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. W. Rutherford, A. Boussac, P. Faller, Biochim. Biophys. Acta 2004, 1655, 222.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Berthomieu, R. Hienerwadel, Biochim. Biophys. Acta 2005, 1707, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) S. V. Ruffle, D. Donnelly, T. L. Blundell, J. H. A. Nugent, Photosynth. Res. 1992, 34, 287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjs1SqtQ%3D%3D&md5=082949c28b28c4a4575095dcca6d9212CAS | 24408780PubMed |
      (b) B. Svensson, C. Etchebest, P. Tuffery, P. van Kan, J. Smith, S. Styring, Biochemistry 1996, 35, 14486.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  C. A. Buser, L. K. Thompson, B. A. Diner, G. W. Brudvig, Biochemistry 1990, 29, 8977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsV2jtLY%3D&md5=f5f7d736e43eb8b28e783d719348dbf2CAS | 2176840PubMed |

[17]  (a) W. F. J. Vermaas, G. Renger, G. Dohnt, Biochim. Biophys. Acta 1984, 764, 194.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtFOqu7Y%3D&md5=7cb1b2c90961233644971b31620a6ef7CAS |
      (b) S. Styring, A. W. Rutherford, Biochemistry 1987, 26, 2401.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  I. Vass, S. Styring, Biochemistry 1991, 30, 830.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXjvFertQ%3D%3D&md5=cfab17b4922320e2cb260d555735b1dfCAS | 1988070PubMed |

[19]  J. Messinger, G. Renger, Biochemistry 1993, 32, 9379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlGrsLk%3D&md5=3300fd7df31ecc41faf38a9d42e53a11CAS | 8369309PubMed |

[20]  B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 1983, 4, 187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXit1aiu7w%3D&md5=0c1d8a9547a3abf84bc32ec09d35c708CAS |

[21]  A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 1998, 102, 3586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVOlsb4%3D&md5=71b4a1e8e893cd039e356fa79522d1caCAS | 24889800PubMed |

[22]  QSite, version 5.8 2012 (Schrödinger, LLC: New York, NY).

[23]  M. Petrek, M. Otyepka, P. Banas, P. Kosinova, J. Koca, J. Damborsky, BMC Bioinformatics 2006, 7, 316.
         | Crossref | GoogleScholarGoogle Scholar | 16792811PubMed |