The Use of Hydrogels as Biomimetic Materials for 3D Cell Cultures
Eric Y. Du A , Adam D. Martin A , Celine Heu A B and Pall Thordarson A CA School of Chemistry, the Australian Centre for Nanomedicine and the Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia.
B Biomedical Imaging Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia.
C Corresponding author. Email: p.thordarson@unsw.edu.au
Australian Journal of Chemistry 70(1) 1-8 https://doi.org/10.1071/CH16241
Submitted: 16 April 2016 Accepted: 27 May 2016 Published: 23 June 2016
Abstract
With the recent developments in cell cultures and biomimetic materials, there is growing evidence indicating that long-established two-dimensional (2D) cell culture techniques are slowly being phased out and replaced with three-dimensional (3D) cell cultures. This is due to the 3D cell cultures better mimicking the natural extracellular matrix (ECM) where cells are found. The emergence of self-assembled hydrogels as an ECM mimic has revolutionised the field owing to their ability to closely simulate the fibrous nature of the ECM. Here, we review recent progress in using hydrogels as biomimetic materials in 3D cell cultures, particularly supramolecular peptide hydrogels. With greater comprehension of the behaviour of cells in these hydrogels, a cell culture system that can be used in a wide array of 3D culture-based applications can be developed.
References
[1] D. Loessner, K. S. Stok, M. P. Lutolf, D. W. Hutmacher, J. A. Clements, S. C. Rizzi, Biomaterials 2010, 31, 8494.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWntLfK&md5=e583c1f260081bd3c02145801abf864aCAS | 20709389PubMed |
[2] Z. Yang, X. Zhao, Int. J. Nanomedicine 2011, 6, 303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislChtbg%3D&md5=3dbf3c6e2905bb021e3ae72bfb06259cCAS | 21383855PubMed |
[3] J. F. Bateman, R. P. Boot-Handford, S. R. Lamande, Nat. Rev. Genet. 2009, 10, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGksr4%3D&md5=089edf440c4b312c666e4215db0c69bbCAS | 19204719PubMed |
[4] M. W. Tibbitt, K. S. Anseth, Biotechnol. Bioeng. 2009, 103, 655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslejtb8%3D&md5=0080075709dbe96f0c42629f0bb98453CAS | 19472329PubMed |
[5] R. DeVolder, H. J. Kong, Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGgsbjK&md5=7b7be4c326f900f05fe7d41296264d2fCAS | 22615143PubMed |
[6] A. D. Martin, A. B. Robinson, P. Thordarson, J. Mater. Chem. B 2015, 3, 2277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivFGqsbY%3D&md5=3505e979188b55ebd2fa30a617569b7fCAS |
[7] L. A. Kunz-Schughart, J. P. Freyer, F. Hofstaedter, R. Ebner, J. Biomol. Screen. 2004, 9, 273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1Shtb0%3D&md5=f76ec3242dc5c723e98b6f80fe9f7973CAS | 15191644PubMed |
[8] F. Pampaloni, E. G. Reynaud, E. H. Stelzer, Nat. Rev. Mol. Cell Biol. 2007, 8, 839.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKmt7vL&md5=d099c62c31bc6bfe312c2042c5e16184CAS | 17684528PubMed |
[9] E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, J. de Boer, Trends Biotechnol. 2013, 31, 108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ors70%3D&md5=195fdefa653c3c91530717884e1548b7CAS | 23336996PubMed |
[10] P. C. Beltrao-Braga, G. C. Pignatari, P. C. Maiorka, N. A. Oliveira, N. F. Lizier, C. V. Wenceslau, M. A. Miglino, A. R. Muotri, I. Kerkis, Cell Transplant. 2011, 20, 1707.
| Crossref | GoogleScholarGoogle Scholar | 21457612PubMed |
[11] F. Molina-Jimenez, I. Benedicto, V. L. Dao Thi, V. Gondar, D. Lavillette, J. J. Marin, O. Briz, R. Moreno-Otero, R. Aldabe, T. F. Baumert, F. L. Cosset, M. Lopez-Cabrera, P. L. Majano, Virology 2012, 425, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFalsrs%3D&md5=7b16b445b21d461cb4699aa916e8aa9fCAS | 22280897PubMed |
[12] M. E. Dolega, F. Abeille, N. Picollet-D’hahan, X. Gidrol, Biomaterials 2015, 52, 347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtVylu7o%3D&md5=863c80d123c00c78ba8ee626460c1e5bCAS | 25818441PubMed |
[13] Y. S. Park, H. S. Kim, Y. M. Jin, Y. Yu, H. Y. Kim, H. S. Park, S. C. Jung, K. H. Han, Y. J. Park, K. H. Ryu, I. Jo, Biomaterials 2015, 65, 140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVyhtLrE&md5=e5a9b1ee6bea7178aa11cb62c926f844CAS | 26156233PubMed |
[14] L. G. Villa-Diaz, A. M. Ross, J. Lahann, P. H. Krebsbach, Stem Cells 2013, 31, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2hsbY%3D&md5=faf0d3ac1c43150b64673e4e16d5f834CAS | 23081828PubMed |
[15] M. J. Martin, A. Muotri, F. Gage, A. Varki, Nat. Med. 2005, 11, 228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvF2msQ%3D%3D&md5=a554ba238493c4f7e6458a83d3eabe88CAS | 15685172PubMed |
[16] H. Nandivada, L. G. Villa-Diaz, K. S. O’Shea, G. D. Smith, P. H. Krebsbach, J. Lahann, Nat. Protoc. 2011, 6, 1037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlCmtLw%3D&md5=64a9a611ad8e9773edcd9c30c7c91539CAS | 21720316PubMed |
[17] G. Meng, S. Liu, D. E. Rancourt, Stem Cells Dev. 2012, 21, 2036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCmt73K&md5=5f784cb99886e2a68e260e5fd0258d87CAS | 22149941PubMed |
[18] D. Hernandez, L. Ruban, C. Mason, Stem Cells Dev. 2011, 20, 1089.
| Crossref | GoogleScholarGoogle Scholar | 21142495PubMed |
[19] S. R. Braam, L. Zeinstra, S. Litjens, D. Ward-van Oostwaard, S. van den Brink, L. van Laake, F. Lebrin, P. Kats, R. Hochstenbach, R. Passier, A. Sonnenberg, C. L. Mummery, Stem Cells 2008, 26, 2257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1aqtrvP&md5=a3ba3e446fffd4b0989cb6e65e13ce51CAS | 18599809PubMed |
[20] T. Miyazaki, S. Futaki, K. Hasegawa, M. Kawasaki, N. Sanzen, M. Hayashi, E. Kawase, K. Sekiguchi, N. Nakatsuji, H. Suemori, Biochem. Biophys. Res. Commun. 2008, 375, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOit73K&md5=1e5b145c50403be4969670cf11861624CAS | 18675790PubMed |
[21] S. R. Braam, L. Zeinstra, S. Litjens, D. W. Oostwaard, S. Brink, L. Laake, F. Lebrin, P. Kats, R. Hochstenbach, R. Passier, A. Sonnenberg, C. L. Mummery, Stem Cells 2008, 26, 2257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1aqtrvP&md5=a3ba3e446fffd4b0989cb6e65e13ce51CAS | 18599809PubMed |
[22] E. Ruoslahti, M. D. Pierschbacher, Cell 1986, 44, 517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhvVelu70%3D&md5=628276e5dd4019f0a3777232abaf0b69CAS | 2418980PubMed |
[23] T. Miyazakia, S. Futaki, K. Hasegawa, M. Kawasaki, N. Sanzen, M. Hayashi, E. Kawase, K. Sekiguchi, N. Nakatsuji, H. Suemori, Biochem. Biophys. Res. Commun. 2008, 375, 27.
| Crossref | GoogleScholarGoogle Scholar |
[24] F. Bittinger, C. Brochhausen, C. Skarke, H. Kohler, C. J. Kirkpatrick, Exp. Cell Res. 1997, 236, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1Gktrg%3D&md5=bcde1ee5760caa4c2d6cda704d0db134CAS | 9344595PubMed |
[25] K. De Smet, S. Beken, M. Depreter, F. Roels, A. Vercruysse, V. Rogiers, Toxicol. In Vitro 1999, 13, 579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslWisbc%3D&md5=26b45a65f6d8faadf6f03bb522f6cb5aCAS | 20654519PubMed |
[26] M. A. Cejas, W. A. Kinney, C. Chen, J. G. Vinter, H. R. Almond, K. M. Balss, C. A. Maryanoff, U. Schmidt, M. Breslav, A. Mahan, E. Lacy, B. E. Maryanoff, Proc. Natl. Acad. Sci. USA 2008, 105, 8513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1eksLg%3D&md5=06f9aa12ba5c35163b9abe1a5b71e696CAS | 18559857PubMed |
[27] T. J. Wess, Adv. Protein Chem. 2005, 70, 341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Gku7k%3D&md5=3e3ab0e040f459a0ac231aa6e5a716efCAS | 15837520PubMed |
[28] M. A. Cejas, W. A. Kinney, C. Chen, G. C. Leo, B. A. Tounge, J. G. Vinter, P. P. Joshi, B. E. Maryanoff, J. Am. Chem. Soc. 2007, 129, 2202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KisLc%3D&md5=d62ef3760ef61789753bc6e0887e045dCAS | 17269769PubMed |
[29] C. A. DeForest, B. D. Polizzotti, K. S. Anseth, Nat. Mater. 2009, 8, 659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFSisr8%3D&md5=437c1827c5b422e6142e96aaf46aef2dCAS | 19543279PubMed |
[30] D. L. Alge, M. A. Azagarsamy, D. F. Donohue, K. S. Anseth, Biomacromolecules 2013, 14, 949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1Wnu7s%3D&md5=c9cd3bb28c0d00780f47cc12d34b5b14CAS | 23448682PubMed |
[31] M. S. Hahn, J. S. Miller, J. L. West, Adv. Mater. 2006, 18, 2679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKksLrO&md5=66b79e50c33cf9bacce7698ace06c6b3CAS |
[32] S. H. Lee, J. J. Moon, J. L. West, Biomaterials 2008, 29, 2962.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Kms7g%3D&md5=40e187ab39c35a2769120bab60819f14CAS | 18433863PubMed |
[33] H. Aubin, J. W. Nichol, C. B. Hutson, H. Bae, A. L. Sieminski, D. M. Cropek, P. Akhyari, A. Khademhosseini, Biomaterials 2010, 31, 6941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2msro%3D&md5=d3ba4a015463af47eb6d992c67e2eec8CAS | 20638973PubMed |
[34] S. G. Zhang, C. Lockshin, R. Cook, A. Rich, Biopolymers 1994, 34, 663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVGquro%3D&md5=417a7ea342266f4bf496e71062089a7aCAS |
[35] Z. Luo, Y. Yue, Y. Zhang, X. Yuan, J. Gong, L. Wang, B. He, Z. Liu, Y. Sun, J. Liu, M. Hu, J. Zheng, Biomaterials 2013, 34, 4902.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Slsrs%3D&md5=34d7da5c37f7a0d0a4e1e9cf9b97c168CAS | 23602368PubMed |
[36] H. Yokoi, T. Kinoshita, S. Zhang, Proc. Natl. Acad. Sci. USA 2005, 102, 8414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFCgs7Y%3D&md5=e1d044c8499a8540ae6c7a76efa8c570CAS | 15939888PubMed |
[37] S. Koutsopoulos, S. Zhang, Acta Biomater. 2013, 9, 5162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslektQ%3D%3D&md5=4389b0d173cccdedd3e664bf5be9f401CAS | 22995405PubMed |
[38] E. Genove, S. Schmitmeier, A. Sala, S. Borros, A. Bader, L. G. Griffith, C. E. Semino, J. Cell. Mol. Med. 2009, 13, 3387.
| Crossref | GoogleScholarGoogle Scholar | 19912437PubMed |
[39] C. Castells-Sala, L. Recha-Sancho, A. Llucia-Valldeperas, C. Soler-Botija, A. Bayes-Genis, C. E. Semino, Tissue Eng. Part C Methods 2016, 22, 113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlsVSqtrc%3D&md5=21036816751634ee6ffd170f31e840c8CAS |
[40] Y. Nagai, H. Yokoi, K. Kaihara, K. Naruse, Biomaterials 2012, 33, 1044.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVylsr7L&md5=a4184c8cae62d7950a23fd750c03d51dCAS | 22056753PubMed |
[41] S. Kiyonaka, K. Sugiyasu, S. Shinkai, I. Hamachi, J. Am. Chem. Soc. 2002, 124, 10954.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlGksrs%3D&md5=5d19a75dba3338ff63a732c7a6c5223dCAS | 12224923PubMed |
[42] Y. Zhang, H. Gu, Z. Yang, B. Xu, J. Am. Chem. Soc. 2003, 125, 13680.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Ojsb8%3D&md5=bd947f35b6ae0f8c4e0a173ca90fc528CAS | 14599204PubMed |
[43] V. Jayawarna, M. Ali, T. A. Jowitt, A. F. Miller, A. Saiani, J. E. Gough, R. V. Ulijn, Adv. Mater. 2006, 18, 611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Sntb4%3D&md5=f7990cd2d77e7ad1289327b7d57cf536CAS |
[44] V. Jayawarna, A. Smith, J. E. Gough, R. V. Ulijn, Biochem. Soc. Trans. 2007, 35, 535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1SnsL4%3D&md5=0f310417dac23491f90039d9fc1eee72CAS | 17511646PubMed |
[45] V. Jayawarna, S. M. Richardson, A. R. Hirst, N. W. Hodson, A. Saiani, J. E. Gough, R. V. Ulijn, Acta Biomater. 2009, 5, 934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1SjsL8%3D&md5=eb9486f42c0f88f8eebc22333e27303aCAS | 19249724PubMed |
[46] T. Liebmann, S. Rydholm, V. Akpe, H. Brismar, BMC Biotechnol. 2007, 7, 88.
| Crossref | GoogleScholarGoogle Scholar | 18070345PubMed |
[47] M. Zhou, A. M. Smith, A. K. Das, N. W. Hodson, R. F. Collins, R. V. Ulijn, J. E. Gough, Biomaterials 2009, 30, 2523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCmtrk%3D&md5=497d460c6bacfca840617cbcb1aefc21CAS | 19201459PubMed |
[48] V. N. Modepalli, A. L. Rodriguez, R. Li, S. Pavuluri, K. R. Nicholas, C. J. Barrow, D. R. Nisbet, R. J. Williams, Biopolymers 2014, 102, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltFajtLg%3D&md5=499a7c2246eb6d54c34ea6c49ea55e63CAS | 24488709PubMed |
[49] J. J. Panda, R. Dua, A. Mishra, B. Mittra, V. S. Chauhan, ACS Appl. Mater. Interfaces 2010, 2, 2839.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CmtL7O&md5=2327cd4b47657888f3c1ebc9b229321eCAS | 20886861PubMed |
[50] T. Muraoka, C. Y. Koh, H. Cui, S. I. Stupp, Angew. Chem. Int. Ed. 2009, 48, 5946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFGksbg%3D&md5=6ff8c514b49f4e1bda5c650af1b57f1dCAS |
[51] G. R. Souza, J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, C. S. Levin, L. F. Bronk, J. S. Ananta, J. Mandelin, M. M. Georgescu, J. A. Bankson, J. G. Gelovani, T. C. Killian, W. Arap, R. Pasqualini, Nat. Nanotechnol. 2010, 5, 291.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVCksrw%3D&md5=f52d7b2f171af0b3d262e0b635f65838CAS | 20228788PubMed |
[52] G. A. Silva, C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington, J. A. Kessler, S. I. Stupp, Science 2004, 303, 1352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFyrtLo%3D&md5=d4248c7f90bea60534d97197a951c603CAS | 14739465PubMed |
[53] Y. Song, Y. Li, Q. Zheng, K. Wu, X. Guo, Y. Wu, M. Yin, Q. Wu, X. Fu, J. Biomater. Sci. Polym. Ed. 2011, 22, 475.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1ansrw%3D&md5=4587759a5d51b3960af2ceb3135b3ff9CAS | 20566041PubMed |
[54] T. Y. Cheng, M. H. Chen, W. H. Chang, M. Y. Huang, T. W. Wang, Biomaterials 2013, 34, 2005.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWisbvI&md5=9181735e58c8c7ecdb083b2902e13f2cCAS | 23237515PubMed |