Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Novel SrO-CaO Mixed Metal Oxides Catalyst for Ultrasonic-Assisted Transesterification of Jatropha Oil into Biodiesel

Syed Danish Ali A B , Isma Noreen Javed A C , Usman Ali Rana D , Muhammad Faizan Nazar E H , Waqas Ahmed F , Asifa Junaid A C , Mahmood Pasha C , Rumana Nazir G and Rizwana Nazir G
+ Author Affiliations
- Author Affiliations

A Nano Science and TechnologyDepartment, National Centre for Physics, Islamabad 45320, Pakistan.

B Department of Material Science, University of Milano-Bicocca, Via R. Cozzi 53, Milan, I-20126, Italy.

C Department of Chemistry, Government Postgraduate College, Jhelum 49600, Pakistan.

D Sustainable Energy Technologies (SET) Center, College of Engineering, PO Box 800, King Saud University, Riyadh 11421, Saudi Arabia.

E Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan.

F Office of Research, Innovation and Commercialization, University of Gujrat, Gujrat 50700, Pakistan.

G Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.

H Corresponding author. Email: faizan_qau@yahoo.com; faizan.nazar@uog.edu.pk

Australian Journal of Chemistry 70(3) 258-264 https://doi.org/10.1071/CH16236
Submitted: 14 April 2016  Accepted: 22 July 2016   Published: 25 August 2016

Abstract

The transesterification of edible and non-edible oils to produce biodiesel is traditionally carried out using homogeneous catalysts (such as NaOH, KOH, and H2SO4). However, these homogenous catalysts often suffer from multiple drawbacks including their corrosive nature and solubility in the reaction mixture, and high costs associated with their recovery. Recent studies have shown that heterogeneous catalysts based on mixed metal oxides have the potential to address the issues associated with conventional homogeneous catalysts, thereby emerging as an efficient class of catalyst materials for biodiesel production. In this study, we describe a heterogeneous strontium oxide/calcium oxide (SrO-CaO) mixed metal oxides catalyst, which displays remarkable efficiency towards the ultrasonic-assisted transesterification of Jatropha oil into biodiesel. The SrO-CaO heterogeneous catalyst was prepared by the wet impregnation method, and the structural morphology of the as-synthesized catalyst was revealed by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and nitrogen sorption technique coupled with the Brunauer–Emmett–Teller and Barrett–Joyner–Halenda methods. The X-ray diffraction analysis confirmed the cubic structure of the SrO-CaO catalyst. The catalytic activity of this newly developed catalyst showed a high percentage conversion of triglyceride into the corresponding fatty acid methyl esters (98.19 %) as confirmed by 1H NMR spectroscopy. The chemical composition of the prepared biodiesel by this ultrasonic-assisted transesterification process was determined by the gas chromatography–mass spectrometry. Five major fatty acid methyl esters were identified, of which 9-octadecenoic acid methyl ester was obtained with the highest percentage ~38.22 %. Hence, the study reveals that the SrO-CaO catalyst exhibits high efficiency towards converting Jatropha oil into biodiesel by ultrasonic-assisted transesterification.


References

[1]  A. S. Ramadhas, S. Jayaraj, C. Muraleedharan, Fuel 2005, 84, 335.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFGm&md5=e7eb1d94b48eafd8349e31f0d18f3048CAS |

[2]  D. E. López, J. G. Goodwin, D. A. Bruce, E. Lotero, Appl. Catal., A 2005, 295, 97.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  P. D. Patil, S. Deng, Fuel 2009, 88, 1302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFaqsr8%3D&md5=28311abcc0ba5579b42a1e76f9a9f567CAS |

[4]  W. Ahmed, M. F. Nazar, S. D. Ali, U. A. Rana, S. D. Khan, J. Energy Chem. 2015, 24, 331.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  F. Tahira, S. T. Hussain, S. D. Ali, Z. Iqbal, W. Ahmad, Int. J. Energy Power 2012, 1, 31.

[6]  H. Xu, X. Miao, Q. Wu, J. Biotechnol. 2006, 126, 499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeqtL7M&md5=f88ed54109a1444a5b62eb1ecdfa2ff0CAS | 16772097PubMed |

[7]  C. Öner, S. Altun, Appl. Energy 2009, 86, 2114.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. A. Colucci, E. E. Borrero, F. Alape, J. Am. Oil Chem. Soc. 2005, 82, 525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps12jurs%3D&md5=7616cfe4b0eb194d5eaf79c0d72d207cCAS |

[9]  S. Baroutian, M. K. Aroua, A. A. A. Raman, N. M. N. Sulaiman, Chem. Eng. Data 2008, 53, 877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFWgtbk%3D&md5=d11b41d829ff018129ba9b7c8aa50dfeCAS |

[10]  L. Bournay, D. Casanave, B. Delfort, G. Hillion, J. A. Chodorge, Catal. Today 2005, 106, 190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFegurrP&md5=e23d22e5987fed15dd2654b2e6bc47f4CAS |

[11]  G. Arzamendi, I. Campo, E. Arguinarena, M. Sanchez, M. Montes, L. M. Gandia, Chem. Eng. J. 2007, 134, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVOrs7g%3D&md5=32d57e9815a1a976b03a3fba6278cf54CAS |

[12]  W. Xie, H. Peng, L. Chen, Appl. Catal., A 2006, 300, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCnsLrN&md5=de9c1b91914e381ff45aa2c000c7d3adCAS |

[13]  X. Liu, H. He, Y. Wang, S. Zhu, Catal. Commun. 2007, 8, 1107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1KhtL8%3D&md5=90297f114903ef7fc3f5c0a0b8829df0CAS |

[14]  A. F. Lee, J. A. Bennett, J. C. Manayil, K. Wilson, Chem. Soc. Rev. 2014, 43, 7887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtValsrrE&md5=07402c3ddd9d3db360d53dad35db00deCAS | 24957179PubMed |

[15]  A. F. Lee, K. Wilson, Catal. Today 2015, 242, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVajsb4%3D&md5=40c1de829eaab0648b6c7d6153e62cd1CAS |

[16]  M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, J. Hidaka, Fuel 2008, 87, 2798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1enurY%3D&md5=bbee281a6652529cd0ef8cab2e2ffc7cCAS |

[17]  G. Corro, N. Tellez, E. Ayala, A. Marinez-Ayala, Fuel 2010, 89, 2815.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Siurw%3D&md5=00ee46db46f88554b3b1e09792c49c41CAS |

[18]  S. T. Hussain, W. Ahmed, M. Saeed, S. D. Ali, M. Asma, J. Renewable Sustainable Energy 2013, 5, 023104.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  X. Li, G. Lu, Y. Guo, Y. Wang, Z. Zhang, X. Liu, Catal. Commun. 2007, 8, 1969.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Ght7vJ&md5=255126c3a1e35d1fdd7e6d295dddf579CAS |

[20]  G. J. Suppes, M. A. Dasari, E. J. Doskocil, P. J. Mankidy, M. J. Goff, Appl. Catal., A 2004, 257, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlCh&md5=6f16d13b7c32b128f6b035e6a0f7de57CAS |

[21]  I. K. Mbaraka, B. H. Shanks, J. Am. Oil Chem. Soc. 2006, 83, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislKnsL8%3D&md5=ca8b92ff047554c0ccd05cf8a0f915a3CAS |

[22]  T. F. Dossin, M. F. Reyniers, R. J. Berger, G. B. Marin, Appl. Catal., B 2006, 67, 136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xosl2gurg%3D&md5=dd1de2b38a8233559f7e1f77b8759e43CAS |

[23]  G. Arzamendi, E. Arguinarena, I. Campo, S. Zabala, L. M. Gandia, Catal. Today 2008, 133–135, 305.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. P. Mikkola, T. Salmi, Catal. Today 2001, 64, 271.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFyksrw%3D&md5=028f5d17514773b14da616e1af36801aCAS |

[25]  C. Stavarache, M. Vinatoru, Y. Maeda, Ultrason. Sonochem. 2006, 13, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVSksbo%3D&md5=49935f337d502ecac372f114ae90a260CAS | 16242375PubMed |

[26]  H. D. Hanh, N. T. Dong, K. Okitsu, R. Nishimura, Y. Maeda, Renewable Energy 2009, 34, 766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWjtb3L&md5=dc73459af1b2dda34f4aec63ac96fa27CAS |

[27]  P. Wu, Y. Yang, J. A. Colucci, E. A. Grulke, J. Am. Oil Chem. Soc. 2007, 84, 877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2qsbjM&md5=106ba8bf7828373471c82ed12699f99dCAS |

[28]  D. Vujicic, D. Comic, A. Zarubica, R. Micic, G. Boskovic, Fuel 2010, 89, 2054.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1ektbo%3D&md5=56db5d5c2efa346cc26bb7d236584c18CAS |

[29]  S. Gryglewicz, Bioresour. Technol. 1999, 70, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslSjt74%3D&md5=db77d84614902730ad90d02d4b7cb5e9CAS |

[30]  A. Kawashima, K. Matsubara, K. Honda, Bioresour. Technol. 2009, 100, 696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OksbnL&md5=bf76be22bc46e3f951706b90f65dc989CAS | 18684617PubMed |

[31]  H. Mootabadi, B. Salamatinia, S. Bhatia, A. Z. Abdullah, Fuel 2010, 89, 1818.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1ektrk%3D&md5=0400c342a310b308899652e7e3758662CAS |

[32]  D. G. Cantrell, L. J. Gillie, A. F. Lee, K. Wilson, Appl. Catal., A 2005, 287, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVOiurc%3D&md5=fcca6d76fd7e5135598dbe053e0a94d5CAS |

[33]  X. Deng, Z. Fang, Y-H. Liu, C.-L. Yu, Energy 2011, 36, 777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGrtrg%3D&md5=95722dfa04294da3cd49891acf07643bCAS |

[34]  J. Jitputti, B. Kitiyanan, P. Rangsunvigit, K. Bunyakiat, L. Attanatho, P. Jenvanitpanjakul, Chem. Eng. J. 2006, 116, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWqu77I&md5=bd6322749fbc9a84fdffa99f5128fea9CAS |

[35]  E. A. Faria, J. S. Marques, I. M. Dias, R. D. A. Andrade, P. A. Z. Suarez, A. G. S. Prado, J. Braz. Chem. Soc. 2009, 20, 1732.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVCl&md5=05e6ca0005e91d8e99859f023eb5ceeeCAS |

[36]  N. Boz, M. Kara, Chem. Eng. Commun. 2008, 196, 80.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  V. M. Mello, F. C. C. Oliveira, W. G. Fraga, C. J. D. Nascimento, P. A. Z. Suarez, Magn. Reson. Chem. 2008, 46, 1051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWnsb%2FF&md5=bb0318bc842da7fef1859d0ccc4095a6CAS | 18780308PubMed |

[38]  M. R. Monteiro, A. R. P. Ambrozin, L. M. Liao, A. G. Ferreira, Fuel 2009, 88, 691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVKktw%3D%3D&md5=9beb6a95cd03bd5bbd9d9c35ef6ac26dCAS |

[39]  G. Gelbard, O. Bres, R. M. Vargas, F. Vielfaure, U. F. Schuchardt, J. Am. Oil Chem. Soc. 1995, 72, 1239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXos1SitL0%3D&md5=a95f0738f7c5ab9149431528204d8c98CAS |

[40]  G. Knothe, J. Am. Oil Chem. Soc. 2000, 77, 489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVKgt7c%3D&md5=a931323306c2229d5cb1079700565e98CAS |

[41]  H. J. Berchmans, S. Hirata, Bioresour. Technol. 2008, 99, 1716.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVGktA%3D%3D&md5=97a346ded7d64d7d486e4dbe5ed08dd8CAS | 17531473PubMed |

[42]  H. Lu, Y. Liu, H. Zhou, Y. Yang, M. Chen, B. Liang, Comput. Chem. Eng. 2009, 33, 1091.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlGjtLY%3D&md5=642bdf89e2fe3530d9ab403e8c059f80CAS |