Electronic and Optical Properties of the Narrowest Armchair Graphene Nanoribbons Studied by Density Functional Methods
Chia-Nan Yeh A C , Pei-Yin Lee A C and Jeng-Da Chai A B DA Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
B Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
C These authors contributed equally to this work.
D Corresponding author. Email: jdchai@phys.ntu.edu.tw
Australian Journal of Chemistry 69(9) 960-968 https://doi.org/10.1071/CH16187
Submitted: 25 March 2016 Accepted: 5 May 2016 Published: 26 May 2016
Abstract
In the present study, a series of planar poly(p-phenylene) (PPP) oligomers with n phenyl rings (n = 1–20), designated as n-PP, are taken as finite-size models of the narrowest armchair graphene nanoribbons with hydrogen passivation. The singlet-triplet energy gap, vertical ionization potential, vertical electron affinity, fundamental gap, optical gap, and exciton binding energy of n-PP are calculated using Kohn-Sham density functional theory and time-dependent density functional theory with various exchange-correlation density functionals. The ground state of n-PP is shown to be singlet for all the chain lengths studied. In contrast to the lowest singlet state (i.e., the ground state) of n-PP, the lowest triplet state of n-PP and the ground states of the cation and anion of n-PP are found to exhibit some multi-reference character. Overall, the electronic and optical properties of n-PP obtained from the ωB97 and ωB97X functionals are in excellent agreement with the available experimental data.
References
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Kqt70%3D&md5=9ceb59381575adc645feb1755262b055CAS | 15499015PubMed |
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2nsrnI&md5=fcc12876125d6565fc78a806142becc0CAS | 16281030PubMed |
[3] Y. Zhang, Y. Tan, H. L. Stormer, P. Kim, Nature 2005, 438, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2nsrnJ&md5=50d0c8349b4cd4a40824f77bed3eb4a0CAS | 16281031PubMed |
[4] A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Khtrg%3D&md5=042bcba74a201c736bf9dc4155528373CAS | 17330084PubMed |
[5] A. K. Geim, Science 2009, 324, 1530.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFOrsLk%3D&md5=a6c7983d18ef6e8d59e57bf7a15b2386CAS | 19541989PubMed |
[6] Y. J. Song, A. F. Otte, Y. Kuk, Y. Hu, D. B. Torrance, P. N. First, W. A. de Heer, H. Min, S. Adam, M. D. Stiles, A. H. MacDonald, J. A. Stroscio, Nature 2010, 467, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFegsbjJ&md5=e871e12fe38ae19dc4d3974d010e3600CAS | 20829790PubMed |
[7] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J. M. Tour, Nature 2010, 468, 549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2rtb7J&md5=41141fb50f334ff853cdae758d59d7b7CAS | 21068724PubMed |
[8] K. Suenaga, M. Koshino, Nature 2010, 468, 1088.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKmu7fL&md5=ec736567ad4c2249280ba6bad12ee726CAS | 21160475PubMed |
[9] Y. Q. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. N. Xia, D. B. Farmer, Y. Zhu, P. Avouris, Nature 2011, 472, 74.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVCrsLY%3D&md5=c179e1bd59a794bdcd40be4acfc43a2fCAS |
[10] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFGgs70%3D&md5=beb734f298c8ea3fb4ce712635340e09CAS | 19370030PubMed |
[11] L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 2009, 458, 877.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFGgtr4%3D&md5=f85c110ec46816c0df48a78a6e321f33CAS | 19370031PubMed |
[12] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 2010, 466, 470.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFGqsbs%3D&md5=2084d82592b3b88de98868759d153420CAS | 20651687PubMed |
[13] A. V. Talyzin, I. V. Anoshkin, A. V. Krasheninnikov, R. M. Nieminen, A. G. Nasibulin, H. Jiang, E. I. Kauppinen, Nano Lett. 2011, 11, 4352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSmtb%2FN&md5=7041dfdb5bc37b27d862927619acaff2CAS | 21875092PubMed |
[14] M. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, F. Wudl, J. Am. Chem. Soc. 2004, 126, 7416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFSgtLs%3D&md5=06830e047c61f8fed5404d6c7fa32602CAS | 15198569PubMed |
[15] H. Lee, Y.-W. Son, N. Park, S. Han, J. Yu, Phys. Rev. B 2005, 72, 174431.
| Crossref | GoogleScholarGoogle Scholar |
[16] Y.-W. Son, M. L. Cohen, S. G. Louie, Nature 2006, 444, 347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SgtLfL&md5=cf32f5f5ad8ebf19ba70e32f58971618CAS | 17108960PubMed |
[17] Y.-W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803.
| Crossref | GoogleScholarGoogle Scholar | 17155765PubMed |
[18] V. Barone, O. Hod, G. E. Scuseria, Nano Lett. 2006, 6, 2748.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CnsrzN&md5=5fa15edec0a96a80fdc9292453979d31CAS | 17163699PubMed |
[19] L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2007, 99, 186801.
| Crossref | GoogleScholarGoogle Scholar | 17995426PubMed |
[20] D. A. Areshkin, D. Gunlycke, C. T. White, Nano Lett. 2007, 7, 204.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12nsbfJ&md5=9257488514d99de9f6fa8e61ecce1a44CAS | 17212465PubMed |
[21] E. Rudberg, P. Salek, Y. Luo, Nano Lett. 2007, 7, 2211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVWkt7Y%3D&md5=ebc57fb2f8202965f586f26cf3fc7644CAS | 17602536PubMed |
[22] O. Hod, V. Barone, J. E. Peralta, G. E. Scuseria, Nano Lett. 2007, 7, 2295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVSgs7c%3D&md5=a1a9dcceeea4e69af1133a7cc33257c5CAS | 17628112PubMed |
[23] D. Jiang, B. G. Sumpter, S. Dai, J. Chem. Phys. 2007, 126, 134701.
| Crossref | GoogleScholarGoogle Scholar | 17430050PubMed |
[24] M. Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 2007, 98, 206805.
| Crossref | GoogleScholarGoogle Scholar | 17677729PubMed |
[25] B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S. Levitov, P. Kim, Phys. Rev. Lett. 2007, 99, 166804.
| Crossref | GoogleScholarGoogle Scholar | 17995279PubMed |
[26] J. Hachmann, J. J. Dorando, M. Aviles, G. K. L. Chan, J. Chem. Phys. 2007, 127, 134309.
| Crossref | GoogleScholarGoogle Scholar | 17919026PubMed |
[27] O. V. Yazyev, M. I. Katsnelson, Phys. Rev. Lett. 2008, 100, 047209.
| Crossref | GoogleScholarGoogle Scholar | 18352331PubMed |
[28] O. Hod, V. Barone, G. E. Scuseria, Phys. Rev. B 2008, 77, 035411.
| Crossref | GoogleScholarGoogle Scholar |
[29] D. Jiang, S. Dai, J. Phys. Chem. A 2008, 112, 332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehurrN&md5=6387c949008b110327337fcfce23994dCAS | 18085758PubMed |
[30] D. Casanova, M. Head-Gordon, Phys. Chem. Chem. Phys. 2009, 11, 9779.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSjtr3P&md5=d92d47ed56d5fd59aba9c27ba65b9a2bCAS | 19851557PubMed |
[31] B. Hajgató, D. Szieberth, P. Geerlings, F. De Proft, M. S. Deleuze, J. Chem. Phys. 2009, 131, 224321.
| Crossref | GoogleScholarGoogle Scholar | 20001050PubMed |
[32] K. Pelzer, L. Greenman, G. Gidofalvi, D. A. Mazziotti, J. Phys. Chem. A 2011, 115, 5632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFClsLw%3D&md5=eb844c7df327e86317c046984b0c2038CAS | 21563790PubMed |
[33] B. Hajgató, M. Huzak, M. S. Deleuze, J. Phys. Chem. A 2011, 115, 9282.
| Crossref | GoogleScholarGoogle Scholar | 21755960PubMed |
[34] M. Huzak, M. S. Deleuze, B. Hajgató, J. Chem. Phys. 2011, 135, 104704.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbjvFSqsQ%3D%3D&md5=e9f0a68d0a88aeaad3683e59363dd1b0CAS | 21932915PubMed |
[35] J.-D. Chai, J. Chem. Phys. 2012, 136, 154104.
| Crossref | GoogleScholarGoogle Scholar | 22519312PubMed |
[36] W. Mizukami, Y. Kurashige, T. Yanai, J. Chem. Theory Comput. 2013, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSmt7bO&md5=e9bf5855c01630ca210de64f7b05225fCAS | 26589042PubMed |
[37] P. Rivero, C. A. Jiménez-Hoyos, G. E. Scuseria, J. Phys. Chem. B 2013, 117, 12750.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1yjs7k%3D&md5=2fa86b8e6bd94d593a61cfd14bbf69afCAS | 23668255PubMed |
[38] F. Plasser, H. Pašalić, M. H. Gerzabek, F. Libisch, R. Reiter, J. Burgdörfer, T. Müller, R. Shepard, H. Lischka, Angew. Chem. Int. Ed. 2013, 52, 2581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyhu70%3D&md5=d961682c8fd75fd31eb940d97c6ced2fCAS |
[39] S. Chopra, L. Maidich, Graphene 2013, 1, 114.
| Crossref | GoogleScholarGoogle Scholar |
[40] S. Chopra, L. Maidich, Quantum Matter 2014, 3, 559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFequr%2FJ&md5=70c5a8f22e7525868563bec66e078633CAS |
[41] S. Chopra, L. Maidich, RSC Adv. 2014, 4, 50606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ShsrzN&md5=072cc4c0880db858a1d5e62d1947ecf8CAS |
[42] J.-D. Chai, J. Chem. Phys. 2014, 140, 18A521.
| Crossref | GoogleScholarGoogle Scholar | 24832329PubMed |
[43] S. Horn, F. Plasser, T. Müller, F. Libisch, J. Burgdörfer, H. Lischka, Theor. Chem. Acc. 2014, 133, 1511.
| Crossref | GoogleScholarGoogle Scholar |
[44] C.-S. Wu, J.-D. Chai, J. Chem. Theory Comput. 2015, 11, 2003.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlt1Clsbs%3D&md5=92af01fef7382a59235f321d5e9e8d55CAS | 26894252PubMed |
[45] A. Kimouche, M. M. Ervasti, R. Drost, S. Halonen, A. Harju, P. M. Joensuu, J. Sainio, P. Liljeroth, Nat. Commun. 2015, 6, 10177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVWqsL7K&md5=1921d81af8ae9af00e0aba333db676b0CAS | 26658960PubMed |
[46] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
| Crossref | GoogleScholarGoogle Scholar |
[47] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
| Crossref | GoogleScholarGoogle Scholar |
[48] E. Runge, E. K. U. Gross, Phys. Rev. Lett. 1984, 52, 997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsVGit78%3D&md5=00cd2f0a02a832879c9f1d4378c5b388CAS |
[49] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules 1989 (Oxford University Press: New York, NY).
[50] S. Kümmel, L. Kronik, Rev. Mod. Phys. 2008, 80, 3.
| Crossref | GoogleScholarGoogle Scholar |
[51] A. J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 2012, 112, 289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GltrbE&md5=ba62af9c45939e4e0ed4348d86a0806eCAS | 22191548PubMed |
[52] C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications 2012 (Oxford University: New York, NY).
[53] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, J. Sun, Phys. Rev. Lett. 2009, 103, 026403.
| Crossref | GoogleScholarGoogle Scholar | 19659225PubMed |
[54] A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlagt7o%3D&md5=e85fe60f193d14713ecc5526db7864c2CAS |
[55] A. Savin, Recent Developments and Applications of Modern Density Functional Theory 1996 (Elsevier: Amsterdam).
[56] H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 2001, 115, 3540.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVehs7w%3D&md5=866e5ade63cf87f643f5a5d3a17844c5CAS |
[57] T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFKgtbs%3D&md5=b62eb59c694a178aa43858fe34ac9f1eCAS |
[58] O. A. Vydrov, J. Heyd, A. V. Krukau, G. E. Scuseria, J. Chem. Phys. 2006, 125, 074106.
| Crossref | GoogleScholarGoogle Scholar | 16942321PubMed |
[59] E. Livshits, R. Baer, Phys. Chem. Chem. Phys. 2007, 9, 2932.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVylsbY%3D&md5=91567493fbd22ee19e3fc6ee927acb02CAS | 17551616PubMed |
[60] J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.
| Crossref | GoogleScholarGoogle Scholar | 18315032PubMed |
[61] J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCksbfO&md5=d19462eb265527d412158ccd19d06c5fCAS | 18989472PubMed |
[62] J.-D. Chai, M. Head-Gordon, Chem. Phys. Lett. 2008, 467, 176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKrtb%2FL&md5=26922a1f39fa8bfd8658891fc626aafaCAS |
[63] J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 2009, 131, 174105.
| Crossref | GoogleScholarGoogle Scholar | 19894996PubMed |
[64] Y.-S. Lin, C.-W. Tsai, G.-D. Li, J.-D. Chai, J. Chem. Phys. 2012, 136, 154109.
| Crossref | GoogleScholarGoogle Scholar | 22519317PubMed |
[65] Y.-S. Lin, G.-D. Li, S.-P. Mao, J.-D. Chai, J. Chem. Theory Comput. 2013, 9, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WltLrP&md5=00557ac5f6d1bd58634ce978f5ce2f89CAS | 26589028PubMed |
[66] P. A. M. Dirac, Proc. Camb. Philos. Soc. 1930, 26, 376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3cXlt1Shsg%3D%3D&md5=50443fade073984755c6d0f9b2a75eccCAS |
[67] J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.
| Crossref | GoogleScholarGoogle Scholar |
[68] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=80e9e7f93c4d868c24426c2d2790225cCAS | 10062328PubMed |
[69] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=67534a0142c21d41090f4ba518ecc166CAS |
[70] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1446c2427b0599ea3e79a7334c6afa9cCAS |
[71] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVCmt7Y%3D&md5=eb685a60ae227e8a03f08433e846a77eCAS |
[72] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f3f6bac3f3f06397785c39408dfcd392CAS |
[73] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=d84750a298066bccdd5f8004a5c323baCAS |
[74] C.-W. Tsai, Y.-C. Su, G.-D. Li, J.-D. Chai, Phys. Chem. Chem. Phys. 2013, 15, 8352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFyqsLg%3D&md5=46a0859e8cfb04fedfa7e6dc9f336bacCAS | 23619978PubMed |
[75] J.-C. Lee, J.-D. Chai, S.-T. Lin, RSC Adv. 2015, 5, 101370.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVyht7fP&md5=f219763967d52c1467b6fd5e9c005013CAS |
[76] K. Seki, U. O. Karlsson, R. Engelhardt, E. E. Koch, W. Schmidt, Chem. Phys. 1984, 91, 459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXnvFGjsA%3D%3D&md5=ee49c45caf7637cd9db7f904f0a4e4aaCAS |
[77] B. Saha, M. Ehara, H. Nakatsuji, J. Phys. Chem. A 2007, 111, 5473.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFKisr0%3D&md5=c3a175423eac78ae31cef1061d0f93e2CAS | 17542562PubMed |
[78] D. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems 2001 (Wiley: New York, NY).
[79] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Z. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Mol. Phys. 2015, 113, 184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2ksbnN&md5=2b8f8604dfa216bb4fb4254ba61bea27CAS |
[80] C. W. Murray, N. C. Handy, G. J. Laming, Mol. Phys. 1993, 78, 997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWisLo%3D&md5=6f83f4acbf611a193c282f793763c4bfCAS |
[81] V. I. Lebedev, D. N. Laikov, Dokl. Math. 1999, 59, 477.
[82] J. F. Janak, Phys. Rev. B 1978, 18, 7165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhsFOhtLw%3D&md5=9355e22aa63ca2d0f872a71bacf249bcCAS |
[83] J. P. Perdew, R. G. Parr, M. Levy, J. L. Balduz, Phys. Rev. Lett. 1982, 49, 1691.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXit1CisQ%3D%3D&md5=317ae1c5b4bb1910076da466da552040CAS |
[84] M. Levy, J. P. Perdew, V. Sahni, Phys. Rev. A 1984, 30, 2745.
| Crossref | GoogleScholarGoogle Scholar |
[85] C.-O. Almbladh, U. von Barth, Phys. Rev. B 1985, 31, 3231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsFGjsbY%3D&md5=8aaaf570cc27f226d497d5e6313d4d2fCAS |
[86] J. P. Perdew, M. Levy, Phys. Rev. B 1997, 56, 16021.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotFWntbg%3D&md5=9d44d73b0655b395a28ace60fc44b377CAS |
[87] M. E. Casida, Phys. Rev. B 1999, 59, 4694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtVKgur0%3D&md5=60c8a69b8096b2fffc3f9e45b3cb6151CAS |
[88] J. P. Perdew, M. Levy, Phys. Rev. Lett. 1983, 51, 1884.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtFyrt70%3D&md5=eb61d13faa893952d923af8bee5a4c61CAS |
[89] L. J. Sham, M. Schlüter, Phys. Rev. Lett. 1983, 51, 1888.
| Crossref | GoogleScholarGoogle Scholar |
[90] L. J. Sham, M. Schlüter, Phys. Rev. B 1985, 32, 3883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlsVOgu7w%3D&md5=d579c94f472780c03738e3a30eef6c2aCAS |
[91] W. Kohn, Phys. Rev. B 1986, 33, 4331.
| Crossref | GoogleScholarGoogle Scholar |
[92] G. K. L. Chan, J. Chem. Phys. 1999, 110, 4710.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlektb8%3D&md5=7924e59615b588891fb6ca1b50bf9b79CAS |
[93] D. J. Tozer, N. C. Handy, Mol. Phys. 2003, 101, 2669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVKqsrw%3D&md5=de97ba51b08232b608b71be06f43ded5CAS |
[94] E. Sagvolden, J. P. Perdew, Phys. Rev. A 2008, 77, 012517.
| Crossref | GoogleScholarGoogle Scholar |
[95] P. Mori-Sánchez, A. J. Cohen, W. Yang, Phys. Rev. Lett. 2009, 102, 066403.
| Crossref | GoogleScholarGoogle Scholar | 19257614PubMed |
[96] X. Andrade, A. Aspuru-Guzik, Phys. Rev. Lett. 2011, 107, 183002.
| Crossref | GoogleScholarGoogle Scholar | 22107628PubMed |
[97] J.-D. Chai, P.-T. Chen, Phys. Rev. Lett. 2013, 110, 033002.
| Crossref | GoogleScholarGoogle Scholar | 23373919PubMed |
[98] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, M. Levy, Phys. Rev. B 1996, 53, 3764.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1ejsrs%3D&md5=627cc3cf9eb0fd324124c960b5a38971CAS |
[99] T. Tsuneda, J.-W. Song, S. Suzuki, K. Hirao, J. Chem. Phys. 2010, 133, 174101.
| Crossref | GoogleScholarGoogle Scholar | 21054000PubMed |
[100] See Supplementary Material on the Journal’s website for detailed numerical results.
[101] W. Siebrand, J. Chem. Phys. 1967, 47, 2411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXltFantbY%3D&md5=3869099690e04727a14d87f26299e7fbCAS |
[102] S. Ramasesha, I. D. L. Albert, B. Sinha, Mol. Phys. 1991, 72, 537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvFGht74%3D&md5=4b2bcb86e9c54eb23777d28d1f78f7f8CAS |
[103] N. I. Wakayama, Chem. Phys. Lett. 1980, 70, 397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitVKgur8%3D&md5=52cb75955133bf789b5371cc226fb7dfCAS |
[104] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, M. Levy, Phys. Rev. B 1996, 53, 3764.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1ejsrs%3D&md5=627cc3cf9eb0fd324124c960b5a38971CAS |
[105] A. J. Cohen, P. Mori-Sánchez, W. Yang, Phys. Rev. B 2008, 77, 115123.
| Crossref | GoogleScholarGoogle Scholar |
[106] A. S. Menon, L. Radom, J. Phys. Chem. A 2008, 112, 13225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGnur%2FF&md5=f74bf67a9b41db8cf3f6f42359677e2dCAS | 18759419PubMed |
[107] T. Stein, H. Eisenberg, L. Kronik, R. Baer, Phys. Rev. Lett. 2010, 105, 266802.
| Crossref | GoogleScholarGoogle Scholar | 21231698PubMed |
[108] W. Yang, A. J. Cohen, P. Mori-Sánchez, J. Chem. Phys. 2012, 136, 204111.
| Crossref | GoogleScholarGoogle Scholar | 22667544PubMed |
[109] E. Clar, The Aromatic Sextet 1972 (John Wiley & Sons: New York, NY).
[110] S. W. Staley, J. T. Strnad, J. Phys. Chem. 1994, 98, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVarsQ%3D%3D&md5=35a8da2a8615f7a454d273a4a5f8e523CAS |
[111] A. Modelli, G. Distefano, D. Jones, Chem. Phys. 1983, 82, 489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXht1Siurc%3D&md5=0aeb618c363589e8cd4254c7c538b580CAS |
[112] T. Nakamura, N. Ando, Y. Matsumoto, S. Furuse, M. Mitsui, A. Nakajima, Chem. Lett. 2006, 35, 888.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1KitLw%3D&md5=324e228b6d9ea43320aba963d0e043e0CAS |
[113] J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, G. B. Ellison, Chem. Rev. 2002, 102, 231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFGrug%3D%3D&md5=2e163e40af69d33905568a44507a153eCAS | 11782134PubMed |
[114] N. C. Handy, D. J. Tozer, J. Comput. Chem. 1999, 20, 106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlahtw%3D%3D&md5=e6a6ca5a86583c059cbf72fbc9885d29CAS |