Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Colorimetric Approach towards Polycyclic Aromatic Hydrocarbon Sensing

Walmiria Woodland A , Cherie A. Motti B , Paul Irving C , Lynne Van Herwerden A D and George Vamvounis A E
+ Author Affiliations
- Author Affiliations

A College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.

B Australian Institute of Marine Science, PMB no. 3, Townsville MC, Qld 4810, Australia.

C Australian Maritime Safety Authority, Braddon ACT 2612, Australia.

D Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Qld 4811, Australia.

E Corresponding author. Email: george.vamvounis@jcu.edu.au

Australian Journal of Chemistry 69(11) 1292-1295 https://doi.org/10.1071/CH16176
Submitted: 22 March 2016  Accepted: 6 May 2016   Published: 4 July 2016

Abstract

The colorimetric detection of polycyclic aromatic hydrocarbons (PAHs) was achieved using photochromic compounds. This technique exploits the ability of the photochromic compound to reversibly change from a colourless to a coloured compound using ultraviolet light and visible light. In the presence of a PAH, this photoisomerization is inhibited. The degree of inhibition corresponded to the molar absorptivity and excitation wavelength of the PAH, and with a limit of detection in the micromolar range, the current method delivers a highly sensitive and selective technology. In addition, PAH mixtures were successfully identified using this method, providing a potentially fast in-field sensing technology for the identification of likely sources of spilled oil.


References

[1]  L. Wolska, A. Mechlinska, J. Rogowska, J. Namiesnik, Crit. Rev. Food Sci. Nutr. 2012, 42, 1172.
         | 1:CAS:528:DC%2BC38XltFyrtLc%3D&md5=de6c22501b99b5837c2b907d2cb174e6CAS |

[2]  F. M. Adebiyi, E. A. Oluyemi, A. F. Adeyemi, A. A. Akande, O. S. Ajayi, Petroleum Science and Technology 2015, 33, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVyku7nI&md5=036716b7db990f933778bfd257a9648bCAS |

[3]  Y.-H. Kwon, K. Sowoidnich, H. Schmidt, H.-D. Kronfeldt, J. Raman Spectrosc. 2012, 43, 1003.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFyiu7g%3D&md5=06b737e89c8e3125b6ab6737aa210f33CAS |

[4]  M. Algarra, V. JimĂ©nez, P. F. De Violet, M. Lamotte, Anal. Bioanal. Chem. 2005, 382, 1103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFGnurk%3D&md5=29e4f4de4df61b7cd7eadb365cb53ec1CAS | 15895215PubMed |

[5]  D. L. Poster, M. M. Schantz, L. C. Sander, S. A. Wise, Anal. Bioanal. Chem. 2006, 386, 859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVeqsLnP&md5=a6e673d11357a9c68e77609a593f8d2fCAS | 17019586PubMed |

[6]  P.-C. Hsieh, J.-F. Jen, C.-L. Lee, K.-C. Chang, Environ. Eng. Sci. 2015, 32, 301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsV2jsL0%3D&md5=d5297997a97b1837bdbba13b2dd81627CAS |

[7]  E. A. Pena, L. M. Ridley, W. R. Murphy, J. R. Sowa, C. S. Bentivegna, Environ. Toxicol. Chem. 2015, 34, 1946.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOrsb7E&md5=753a61e3634ca3e5d9066d6c10322c6dCAS | 25867932PubMed |

[8]  V. Bansal, P. Kumar, E. E. Kwon, K.-H. Kim, Crit. Rev. Food Sci. Nutr. 2015,
         | Crossref | GoogleScholarGoogle Scholar | 26714230PubMed |

[9]  Y. Liu, H. H. Wang, J. E. Indacochea, M. L. Wang, Sens. Actuators, B 2011, 160, 1149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGmsrzF&md5=131e4ffad2e2525e470befac90c26b71CAS |

[10]  G. Vamvounis, N. Sandery, Aust. J. Chem. 2015, 68, 1723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsleltLnF&md5=91ec9554a76c9882157aaf07554ff960CAS |

[11]  X. Zhang, Y. Chen, Anal. Chim. Acta 2009, 650, 254.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOmt7nM&md5=0af7106ed9484357654a8c0757d97414CAS | 19720201PubMed |

[12]  I. S. Park, E. Heo, Y. S. Nam, C. W. Lee, J. M. Kim, J. Photochem. Photobiol., A 2012, 238, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVCqsLo%3D&md5=a0880e20abfb1e21896507be3ae780faCAS |

[13]  C. Zhang, C. Fan, S. Pu, G. Liu, Chin. J. Chem. 2015, 33, 1310.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVaqtL%2FK&md5=c83530fb78e204019b517183a9576e6cCAS |

[14]  S. Xia, G. Liu, S. Pu, J. Mater. Chem. C 2015, 3, 4023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktFemtLY%3D&md5=4b65440be676ed7efa5c0100e28e407eCAS |

[15]  S. Cui, Y. Dai, Anal. Methods 2015, 7, 3593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksV2gsro%3D&md5=881ebbbbda940162e1e00be31a7362f0CAS |

[16]  A. D. Dubonosov, V. A. Bren, V. I. Minkin, E. N. Shepelenko, K. S. Tikhomirova, A. G. Starikov, Y. V. Revinskii, Tetrahedron 2015, 71, 8817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsF2ktL%2FL&md5=80c766fcf658af3331c7c9f970b9444bCAS |

[17]  J. Zhang, Q. Zou, H. Tian, Adv. Mater. 2013, 25, 378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aqt7bK&md5=4de9c91cb359c87ed5b2912cea71af36CAS | 22911949PubMed |

[18]  G. Lv, B. Cui, H. Lan, Y. Wen, A. Sun, T. Yi, Chem. Commun. 2015, 51, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVKru77I&md5=33d7a4208bc92dd37807a85671d194cbCAS |