Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Computational Studies on the Encapsulation of 1,4-Dihydropyridine Derivatives into CNT(10,10)

Loraine Morete Dutra A , Osmair Vital de Oliveira B C and José Divino dos Santos A
+ Author Affiliations
- Author Affiliations

A Universidade Estadual de Goiás – campus Anápolis, Br 153 no 3.105 – Fazenda Barreiro do Meio, Anápolis, GO, CEP 75.132-400, Brazil.

B Instituto Federal de Educação, Ciência e Tecnologia de São Paulo – campus Catanduva, São Paulo, CEP 15.808-305, Brazil.

C Corresponding author. Email: osmairvital@gmail.com

Australian Journal of Chemistry 70(3) 252-257 https://doi.org/10.1071/CH16165
Submitted: 17 March 2016  Accepted: 10 July 2016   Published: 1 August 2016

Abstract

Semiempirical and density functional theory (DFT) methods were herein used to study the encapsulation process of 1,4-dihydropyridine (DHP) derivatives into (10,10) armchair carbon nanotube (CNT(10,10)). The encapsulated DHPs do not affect the overall structural and electronic properties of the CNT(10,10). The following binding energy was obtained from DFT-D3 calculations: DHP_Cl2@CNT(10,10) (–62.36 kcal mol–1) < DHP_Ph@CNT(10,10) (–54.71 kcal mol–1) < DHP_OH@CNT(10,10) (–43.92 kcal mol–1) < DHP_NO2@CNT(10,10) (–41.71 kcal mol–1) < DHP_H@CNT(10,10) (–32.74 kcal mol–1). The increase in the dipole moment for all DHPs@CNT(10,10) indicates their partial solubility in water. Our results play a promising role as a guide for future experiments using CNTs as a vehicle to transport DHP derivatives.


References

[1]  S. Iijima, Nature 1991, 354, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt1Ojtg%3D%3D&md5=2f5831f08b4f6137dadc2c318d287dd0CAS |

[2]  S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature 1998, 393, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1aitb8%3D&md5=3b32b2481b9be909a8eaa391b6652cc4CAS |

[3]  A. Javey, Q. Wang, A. Ural, Y. M. Li, H. J. Dai, Nano Lett. 2002, 2, 929.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1yqurk%3D&md5=fe639e8592c37714978de8aa943de8f4CAS |

[4]  Y. Lin, S. Taylor, H. Li, K. A. S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y. P. Sun, J. Mater. Chem. 2004, 14, 527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlWmt7w%3D&md5=6c9b5fba5497a3233cc831b183cbabc7CAS |

[5]  S. S. Li, H. He, Q. C. Jiao, Prog. Chem. 2008, 20, 1798.
         | 1:CAS:528:DC%2BD1MXitlKjuw%3D%3D&md5=1157e8f6e722c35146f990077cde32d4CAS |

[6]  Z. Liu, S. M. Tabakman, Z. Chen, Nat. Protoc. 2009, 4, 1372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVygsb7E&md5=16f37e62579cb3935518fd188e1417e2CAS | 19730421PubMed |

[7]  A. Bianco, K. Kostarelos, C. D. Partidos, M. Prato, Chem. Commun. 2005, 571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVOqsg%3D%3D&md5=be752f74d0bed7a0ff66e277801e67c4CAS |

[8]  N. W. S. Kam, T. C. Jessop, P. A. Wender, H. Dai, J. Am. Chem. Soc. 2004, 126, 6850.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVCltbY%3D&md5=fa273471aa4352d95f38bd9020162d31CAS |

[9]  K. Ajima, M. Yudasaka, T. Murakami, A. Maigne, K. Shiba, S. Iijima, Mol. Pharmaceutics 2005, 2, 475.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKhur7J&md5=ecf797dcf2ec740690af703f8cd44fc1CAS |

[10]  R. Saito, M. S. Dresselhaus, G. Dresselhaus, Physical Properties of Carbon Nanotubes 1998 (Imperial College Press: London).

[11]  D. Pantarotto, J.-P. Briand, M. Prato, A. Bianco, Chem. Commun. 2004, 16.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvV2ksw%3D%3D&md5=387a5f83b084a06b8075984d849c8177CAS |

[12]  L. Niu, L. Meng, Q. Lu, Macromol. Biosci. 2013, 13, 735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVehsLc%3D&md5=7ba776a4f4cf137afe8b19ec9bdd401eCAS | 23616476PubMed |

[13]  M. Rezvani, M. D. Ganji, M. Faghihnasiri, Phys. E 2013, 52, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFyksro%3D&md5=b4eb24e2dfec86ff35c44062f2c07122CAS |

[14]  A. Khorsand, S. Jamehbozorgi, R. Ghiasi, M. Rezvani, Phys. E 2015, 72, 120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVKltrs%3D&md5=da9a33c7ee4f7b92ece19ee277f1b8f4CAS |

[15]  Z. Felegari, M. Monajjemi, J. Theor. Comput. Chem. 2015, 14, 1550021.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptFWqtrk%3D&md5=60eaa13c442707cb1b70530a14e370e6CAS |

[16]  Z. Hosni, R. Bessrour, B. Tangour, J. Comput. Theor. Nanosci. 2014, 11, 318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslSmtrc%3D&md5=b1adc387c5a93f6dddcddb2f4d67313cCAS |

[17]  Y. Belmiloud, M. Ouraghi, M. Brahimi, A. Benaboura, D. Charqaoui, B. Tangour, J. Comput. Theor. Nanosci. 2012, 9, 1101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGls7%2FI&md5=aa04adc679711b6d03f4c813a69518ddCAS |

[18]  A. Mejri, D. Vardanega, B. Tangour, T. Gharbi, F. Picaud, J. Phys. Chem. B 2015, 119, 604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehsLbO&md5=06972db5019931991376f57c402d3308CAS | 25514358PubMed |

[19]  A. Gannouni, M. Ourachi, S. Boughdiri, R. Bessrour, A. Benaboura, B. Tangour, J. Comput. Theor. Nanosci. 2012, 9, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFGqsL0%3D&md5=0a9b46e15eb9785cc612b25e4151f5caCAS |

[20]  W. F. Gtari, B. Tangour, Int. J. Quantum Chem. 2013, 113, 2397.
         | 1:CAS:528:DC%2BC3sXnvFSju74%3D&md5=73f46d3d0b84ff27de5946d564bcca0cCAS |

[21]  W. F. Gtari, B. Tangour, Can. J. Chem. 2016, 94, 15.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. Dargouthi, S. Boughdiri, B. Tangour, Acta Chim. Slov. 2015, 62, 445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht12ns7%2FM&md5=5fc3cdbccd3fb100f66ffc5aac9275d3CAS | 26085429PubMed |

[23]  U. Eisner, J. Kuthan, Chem. Rev 1972, 72, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xnt1ehsw%3D%3D&md5=11007a09314ec55724614e6cc1481313CAS |

[24]  B. J. Epstein, K. Vogel, B. F. Palmer, Drugs 2007, 67, 1309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVyku7o%3D&md5=20588aa13e13e9c740eb97cf60bd3c10CAS | 17547473PubMed |

[25]  E. Saltiel, A. G. Ellrodt, J. P. Monk, M. S. Langley, Drugs 1988, 36, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7ntVenuw%3D%3D&md5=78520bb587435d7f9f800118e357a2edCAS | 3069435PubMed |

[26]  J. A. Staessen, J. G. Wang, L. Thijs, J. Hypertens. 2003, 21, 1055.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOmsrc%3D&md5=675044fa8f0d09dd4afe282027143633CAS | 12777939PubMed |

[27]  J. F. Silvestre, M. P. Albares, L. Carnero, R. Botella, J. Am. Acad. Dermatol. 2001, 45, 323.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvhsVCgtQ%3D%3D&md5=4a62a7e8af9bc7dd19a4a02687d49bfdCAS | 11464208PubMed |

[28]  J. Ferguson, Photodermatol., Photoimmunol. Photomed. 2002, 18, 262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptV2htbw%3D&md5=c70354cffa8264ba40754525e9f8c737CAS |

[29]  S. M. Cooper, F. Wojnarowska, Clin. Exp. Dermatol. 2003, 28, 588.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srjslSjuw%3D%3D&md5=a3cbf76b74647e587d6b2077af2bb2d3CAS | 14616820PubMed |

[30]  R. Moscoso, J. Carbajo, J. A. Squella, J. Chil. Chem. Soc. 2014, 59, 2498.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  F. Buonocore, F. Trani, D. Ninno, A. D. Matteo, G. Cantele, G. Iadonisi, Nanotechnology 2008, 19, 025711.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MjjvFegtQ%3D%3D&md5=569b95aa4364b880f18eddac833c0d11CAS | 21817560PubMed |

[32]  T. Mirfakhrai, R. Krishna-Prasad, A. Nojeh, J. D. W. Madden, Nanotechnology 2008, 19, 315706.
         | Crossref | GoogleScholarGoogle Scholar | 21828798PubMed |

[33]  E. Booker, U. Eisner, J. Chem. Soc., Perkin Trans. 1 1975, 929.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXksl2jtr8%3D&md5=80f8f7f321308f3f14d8d55da0c35ee1CAS |

[34]  M. S. Bai, Y. Y. Chen, D. L. Niu, L. Peng, Acta Crystallogr., Sect. E: Crystallogr. Commun. 2009, 65, o799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVCjtL4%3D&md5=43a146fade729816c42413ffe1e499fdCAS |

[35]  P. A. Navarrete-Encina, J. A. Squella, J. Carbajo, B. Conde, L. J. Núñez‐Vergara, Synth. Commun. 2007, 37, 2051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlGrsbk%3D&md5=8adbf6c74de591b64d05f4451d34512cCAS |

[36]  X. Wang, H. Gong, Z. Quan, L. Li, H. Ye, Synth. Commun. 2011, 41, 3251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovF2hu74%3D&md5=42ef333f777253f2661539ec8ab27c1eCAS |

[37]  J. N. Latosińska, Chem. Phys. Lett. 2008, 463, 195.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  J. J. P. Stewart, J. Mol. Model. 2013, 19, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVegtA%3D%3D&md5=72401a9313692b7e2ac23781be09c1d1CAS |

[39]  J. J. P. Stewart, MOPAC2012 2012 (Stewart Computational Chemistry: Colorado Springs, CO). Available at http://OpenMOPAC.net.

[40]  A. Li, H. S. Muddana, M. K. J. Gilson, J. Chem. Theory Comput. 2014, 10, 1563.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtFSjsb0%3D&md5=69e313a1187f74c30cafe51a5bc44b2bCAS | 24803867PubMed |

[41]  J. G. Brandenburg, M. Hochheim, T. Bredow, S. Grimme, J. Phys. Chem. Lett. 2014, 5, 4275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFOht7jF&md5=0aac4566616b72c0c69b9215dd8a9ba8CAS | 26273974PubMed |

[42]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1446c2427b0599ea3e79a7334c6afa9cCAS |

[43]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f3f6bac3f3f06397785c39408dfcd392CAS |

[44]  A. Udomvech, Md. Shafiquzzaman, T. Kerdcharoen, Comput. Mater. Sci. 2015, 98, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyqtL7O&md5=d99044fbc9cc974f4b87d132544f28e7CAS |

[45]  S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
         | Crossref | GoogleScholarGoogle Scholar | 20423165PubMed |

[46]  M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsFaqtQ%3D%3D&md5=e3532055f2c3f4e19509fba5111418d0CAS |

[47]  K. R. Rowan, E. M. Holt, Acta Crystallogr., Sect. C: Struct. Chem. 1996, 52, 2207.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  M. C. Ramusino, M. R. Var, J. Mol. Struct.: THEOCHEM 1999, 492, 257.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  B. Hemmateenejad, R. Miri, M. A. Safarpour, M. Khoshneviszadeh, N. Edraki, J. Mol. Struct.: THEOCHEM 2005, 717, 139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2ltr4%3D&md5=fbd5fb996193099d7e861e4830a26249CAS |