A New Technique for Studying Vapour–liquid Equilibria of Multi-Component Systems
Federico M. Ferrero Vallana A , Lynette A. M. Holland B and Kenneth R. Seddon A CA The QUILL Centre, The Queen’s University of Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
B Procter & Gamble London Innovation Centre, Whitehall Lane, Egham, Surrey TW20 9NW, UK.
C Corresponding author. Email: quill@qub.ac.uk
Australian Journal of Chemistry 69(11) 1240-1246 https://doi.org/10.1071/CH16151
Submitted: 11 March 2016 Accepted: 21 April 2016 Published: 1 July 2016
Abstract
A Fourier transform infrared gas-phase method is described herein and capable of deriving the vapour pressure of each pure component of a poorly volatile mixture and determining the relative vapour phase composition for each system. The performance of the present method has been validated using two standards (naphthalene and ferrocene), and a Raoult’s plot surface of a ternary system is reported as proof-of-principle. This technique is ideal for studying solutions comprising two, three, or more organic compounds dissolved in ionic liquids as they have no measurable vapour pressures.
References
[1] M. B. Esler, D. W. Griffith, S. R. Wilson, L. P. Steele, Anal. Chem. 2000, 72, 206.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFyjsb0%3D&md5=bb2abc9bf3dcfbcd8cdafc91157b7acdCAS | 10655655PubMed |
[2] D. Richter, M. Erdelyi, R. F. Curl, F. K. Tittel, C. Oppenheimer, H. J. Duffell, M. Burton, Opt. Lasers Eng. 2002, 37, 171.
| Crossref | GoogleScholarGoogle Scholar |
[3] T. Karl, T. J. Christian, R. J. Yokelson, P. Artaxo, W. M. Hao, A. Guenther, Atmos. Chem. Phys. 2007, 7, 5883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtbY%3D&md5=693d961f3b8f1b09b06acd6c816c30c5CAS |
[4] P. L. Hanst, S. T. Hanst, Gas Measurement in the Fundamental Infrared Region 1993 (Oriel: Bellingham, WA, USA).
[5] Y. Maréchal, J. Chem. Phys. 1987, 87, 6344.
| Crossref | GoogleScholarGoogle Scholar |
[6] M. Freemantle, An Introduction to Ionic Liquids 2010 (Royal Society of Chemistry: Cambridge).
[7] J. Barker, Aust. J. Chem. 1953, 6, 207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXmsVyhsw%3D%3D&md5=6af2d4d2a037f15baddf49588c756ddcCAS |
[8] B. Vodar, B. L. Neindre, J. P. MacCullough, Experimental Thermodynamics: Experimental Thermodynamics of Non-Reacting Fluids 1975 (Elsevier Science & Technology: London).
[9] Annu. Book ASTM Stand. Part 24, ASTM D, 2879, 1979.
[10] Annu. Book ASTM Stand. Part 23, ASTM D, 323, 1979.
[11] J. Beynon, R. Saunders, Br. J. Appl. Phys. 1960, 11, 128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXnslyjuw%3D%3D&md5=6e9a60f493a97a34994fdd5db8173793CAS |
[12] P. Bonhôte, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem. 1996, 35, 1168.
| Crossref | GoogleScholarGoogle Scholar | 11666305PubMed |
[13] W. Wagner, A. Pruss, J. Phys. Chem. Ref. Data 1993, 22, 783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksFOgs70%3D&md5=7d7fa7432c51d33fe71a7d44cd113d33CAS |
[14] (a) D. Ambrose, I. Lawrenson, C. Sprake, J. Chem. Thermodyn. 1975, 7, 1173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XkvF2rtA%3D%3D&md5=141e2467f9fd5f617231bd08f54a996aCAS |
(b) K. N. Marsh, K. Marsh, Recommended Reference Materials for the Realization of Physicochemical Properties 1987 (Blackwell Scientific Publications: Oxford)
(c) G. A. Miller, J. Chem. Eng. Data 1963, 8, 69.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. Sinke, J. Chem. Thermodyn. 1974, 6, 311.
| Crossref | GoogleScholarGoogle Scholar |
[15] D. Hudgins, S. Sandford, L. J. Allamandola, J. Phys. Chem. 1994, 98, 4243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFKhsLY%3D&md5=864847fcbd76d6605c912c31f36a03e1CAS | 12269375PubMed |
[16] P. Atkins, J. De Paula, Elements of Physical Chemistry, 6th Edn, 2013 (Oxford University Press: Oxford).
[17] M. J. Monte, L. M. Santos, M. Fulem, J. M. Fonseca, C. A. Sousa, J. Chem. Eng. Data 2006, 51, 757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGqs7c%3D&md5=8c0935d06ade2fac2aee29c89dd590f0CAS |
[18] L. Guan, Z. Shi, M. Li, Z. Gu, Carbon 2005, 43, 2780.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVGgsbk%3D&md5=c7a27c2b9ff37e75ed55f60cbd5fa829CAS |
[19] K. Ruzička, M. Fulem, V. Ruzička, J. Chem. Eng. Data 2005, 50, 1956.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) V. Alphand, R. Furstoss, Tetrahedron: Asymmetry 1992, 3, 379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVyhs7w%3D&md5=48b0a6b1fa927c1306d55cd6c7df79bbCAS |
(b) D. P. McDermott, J. Phys. Chem. 1986, 90, 2569.
| Crossref | GoogleScholarGoogle Scholar |