Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Direct Synthesis of Nitriles from Aldehydes and Hydroxylamine Hydrochloride Catalyzed by a HAP@AEPH2-SO3H Nanocatalyst

Samane Memar Masjed A , Batool Akhlaghinia A B , Monireh Zarghani A and Nasrin Razavi A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.

B Corresponding author. Email: akhlaghinia@um.ac.ir

Australian Journal of Chemistry 70(1) 33-43 https://doi.org/10.1071/CH16126
Submitted: 2 March 2016  Accepted: 15 May 2016   Published: 14 June 2016

Abstract

We describe an efficient method for the direct preparation of nitriles from aldehydes and hydroxylamine hydrochloride catalyzed by sulfonated nanohydroxyapatite functionalized by 2-aminoethyl dihydrogen phosphate (HAP@AEPH2-SO3H) as an eco-friendly and recyclable solid acid nanocatalyst. In this protocol the use of a solid acid nanocatalyst provides a green, useful, and rapid method for the preparation of nitriles in excellent yields. In addition, the notable feature of this methodolgy is that the synthesized nanocatalyst can be recovered and reused five times without any noticeable loss of efficiency.


References

[1]     (a) R. C. Larock, Comprehensive Organic Transformations 1989 (VCH: New York, NY).
         (b) C. Grundmann, in Houben-Weyl: Methodender Organischen Chemie (Ed. J. Falbe) 1985, pp. 1313–1527 (Georg Thieme: Stuttgart).

[2]  (a) C. J. Moody, K. J. Doyle, Prog. Heterocycl. Chem. 1997, 9, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslGjtLc%3D&md5=b29101653289f2197d10626b5a84db2aCAS |
      (b) P. C. Ducept, S. P. Marsden, Synlett 2000, 692.

[3]  (a) X. H. Gu, X. Z. Wan, B. Jiang, Bioorg. Med. Chem. Lett. 1999, 9, 569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVymu7c%3D&md5=66649b66bed921ae07c3c5bdf06d11d4CAS | 10098665PubMed |
      (b) M. Chihiro, H. Nagamoto, I. Takemura, K. Kitano, H. Komatsu, K. Sekiguchi, F. Tabusa, T. Mori, M. Tominaga, Y. Yabuuchi, J. Med. Chem. 1995, 38, 353.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) S. J. Wittenberger, B. G. Donner, J. Org. Chem. 1993, 58, 4139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFGnsb8%3D&md5=c4ab0b62e18a960f520a9dfadb026e4aCAS |
      (b) T. R. Bailey, G. D. Diana, P. J. Kowalczyk, V. Akullian, M. A. Eissenstat, D. Cutcliffe, J. P. Mallamo, P. M. Carabateas, D. C. Pevear, J. Med. Chem. 1992, 35, 4628.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. K. Kadaba, Synthesis 1973, 71.

[5]  G. K. Jnaneshwara, V. H. Deshpande, M. Lalithambika, T. Ravindranathan, A. V. Bedekar, Tetrahedron Lett. 1998, 39, 459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVSksA%3D%3D&md5=d0a7940fe6e970546489c8d368f1f2edCAS |

[6]  R. F. Smith, J. A. Albright, A. M. Waring, J. Org. Chem. 1966, 31, 4100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXivVCqsA%3D%3D&md5=24d83d34beb836af92a46dbf43ac476dCAS |

[7]  M. E. Fabiani, Drug News Perspect. 1999, 12, 207.
         | 1:CAS:528:DyaK1MXkslKhsLs%3D&md5=40c3f56e73c48176c70616aef7bdf19aCAS |

[8]  L. Bini, C. Muller, J. Wilting, L. Chrzanowski, A. L. Spek, D. Vogt, J. Am. Chem. Soc. 2007, 129, 12622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2msLnK&md5=3dcf7b09e4fd3703dc1810edac83d12cCAS | 17902667PubMed |

[9]  (a) T. Sandmeyer, Ber. Dtsch. Chem. Ges. 1885, 18, 1946.
      (b) T. Sandmeyer, Ber. Dtsch. Chem. Ges. 1885, 18, 1492.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Sandmeyer, Ber. Dtsch. Chem. Ges. 1884, 17, 2650.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) K. W. Rosenmund, E. Struck, Ber. Dtsch. Chem. Ges 1919, 52, 1749.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Lindley, Tetrahedron 1984, 40, 1433.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  L. Friedman, H. Shechter, J. Org. Chem. 1960, 25, 877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXhtVartL4%3D&md5=ea75dfd0130f2cc0d75f0375a05e1b63CAS |

[12]  (a) S. H. Khezri, N. Azimi, M. Mohammed-Vali, B. Eftekhari-Sis, M. M. Hashemi, M. H. Baniasadi, F. Teimouric, ARKIVOC 2007, 15, 162.
      (b) R. S. Glass, R. C. Hoy, Tetrahedron Lett. 1976, 17, 1781.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Nishiyama, M. Oba, A. Watanabe, Tetrahedron 1987, 43, 693.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  H. Veisi, Synthesis 2010, 2631.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyhtrnJ&md5=5813ed98b60c6cbf3dcc55b60e0812e5CAS |

[14]  H. Sharghi, M. Hosseini Sarvari, Tetrahedron 2002, 58, 10323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVersL0%3D&md5=8e2f26c36a8404d1c11e5cfb69828055CAS |

[15]  P. Ghosh, R. Subba, Tetrahedron Lett. 2013, 54, 4885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOitbnF&md5=2cce137717958a88c5b12a9e5a93f667CAS |

[16]  H. Sharghi, M. Hosseini Sarvari, Synthesis 2003, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlOks74%3D&md5=38ffb9342bec9b07910719b57944f070CAS |

[17]  M. B. Madhusudana Reddy, M. A. Pasha, Chin. Chem. Lett. 2010, 21, 1025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVChsrs%3D&md5=f565ff2e363f6ef7ee47c0da10755e16CAS |

[18]  V. K. Das, S. N. Harsh, N. Karak, Tetrahedron Lett. 2016, 57, 549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVOmsg%3D%3D&md5=00e3b3392a2595921353f5d636f86b6bCAS |

[19]  G. C. Nandi, K. K. Laali, Tetrahedron Lett. 2013, 54, 2177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1CgsL0%3D&md5=dd4e73c1c07277b9ff751d1c1b2af46bCAS |

[20]  M. Sridhar, M. K. K. Reddy, V. V. Sairam, J. Raveendra, K. R. Godala, C. Narsaiah, B. C. Ramanaiah, C. S. Reddy, Tetrahedron Lett. 2012, 53, 3421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlSks7s%3D&md5=1e12c18c307bfe4d656ae73378627e59CAS |

[21]  B. S. Anandakumar, M. B. M. Reddy, C. N. Tharamani, M. A. Pasha, G. T. Chandrappa, Chin. J. Catal. 2013, 34, 704.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yisrfI&md5=fd2e9360f2877819a4514755fb97cdf8CAS |

[22]  M. Hajjami, A. Ghorbani-Choghamarani, M. A. Zolfigol, F. Gholamian, Chin. Chem. Lett. 2012, 23, 1323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCrsbjI&md5=cc57f6786db283cbcd21bee865e9e282CAS |

[23]  B. V. Rokade, K. R. Prabhu, J. Org. Chem. 2012, 77, 5364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVertLo%3D&md5=8ee9b9a87ec838220b483e8c250226cfCAS | 22616901PubMed |

[24]  Q. Chen, C. Fang, Zh. Shen, M. Li, Electrochem. Commun. 2016, 64, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFyiu7Y%3D&md5=84729226c679a8c2431dcd3706d69160CAS |

[25]  (a) P. Gupta, S. Paul, Catal. Today 2014, 236, 153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnvFSls7k%3D&md5=73ed403c8ea48d0dbcdf024bc17380c8CAS |
         (b) R. A. Sheldon, in Fine Chemicals through Heterogeneous Catalysis (Ed. H. V. Bekkum) 2001, pp. 1–11 (Wiley-VCH: Weinheim).

[26]  (a) K. Niknam, D. Saberi, M. Nouri Sefat, Tetrahedron Lett. 2010, 51, 2959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFGksr0%3D&md5=13c6d1f819778bf668a11f54521b3b5aCAS |
      (b) D. S. Bose, A. V. Narsaiah, Tetrahedron Lett. 1998, 39, 6533.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  M. Zarghani, B. Akhlaghinia, RSC Adv. 2015, 5, 87769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFOrt77I&md5=c2400d37c45cf20b7f08e3be2c5fbf32CAS |

[28]  N. Yousefi Siavashi, B. Akhlaghinia, M. Zarghani, Res. Chem. Intermed. 2016,
         | Crossref | GoogleScholarGoogle Scholar |

[29]  (a) N. Razavi, B. Akhlaghinia, RSC Adv. 2015, 5, 12372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvVWqtQ%3D%3D&md5=bcc75111efc2cd43139ffc040076357dCAS |
      (b) M. Zarghani, B. Akhlaghinia, Appl. Organomet. Chem. 2015, 29, 683.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. S. E. Ghodsinia, B. Akhlaghinia, RSC Adv. 2015, 5, 49849.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Zareie, B. Akhlaghinia, Chem. Pap. 2015, 69, 1421.
      (e) N. Razavi, B. Akhlaghinia, New J. Chem. 2016, 40, 447.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. Jahanshahi, B. Akhlaghinia, RSC Adv. 2015, 5, 104087.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  M. G. Ma, Y. J. Zhu, J. Chang, J. Phys. Chem. B 2006, 110, 14226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsV2js7g%3D&md5=51f310c2b5f5c13e1c8f987e0263d623CAS | 16854124PubMed |

[31]  Y. Daniels, N. Lyczko, A. Nzihou, S. D. Alexandratos, Ind. Eng. Chem. Res. 2015, 54, 585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOku7%2FI&md5=3b6461cdc1e4f8c10f90150bfc33ea3dCAS | 25678741PubMed |

[32]  A. Badiei, H. Goldooz, G. Mohammadi Ziarani, A. Abbasi, J. Colloid Interface Sci. 2011, 357, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVGitrg%3D&md5=041fea3e7bda41d40742f7b01fb54378CAS | 21349532PubMed |

[33]  M. Sheykhan, L. Ma’mani, A. Ebrahimi, A. Heydari, J. Mol. Catal. Chem. 2011, 335, 253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVKgtw%3D%3D&md5=f58d313efa01724393ab3bf589835d3eCAS |

[34]  A. Z. Alshemary, Y. Goh, M. Akram, I. R. Razali, M. A. Kadir, R. Hussain, Mater. Res. Bull. 2013, 48, 2106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlCrs74%3D&md5=d34cb762c2033aeb1517c36540258252CAS |

[35]  (a) F. Mohandes, M. Salavati-Niasari, Mater. Sci. Eng. C 2014, 40, 288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVaitLg%3D&md5=72df04bd8ac7de6012ace2f3ced69fdbCAS |
      (b) G. E. Poinern, R. K. Brundavanam, N. Mondinos, Z. T. Jiang, Ultrason. Sonochem. 2009, 16, 469.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  G. Wang, Y. Zhao, J. Tan, S. Zhu, K. Zhou, Trans Nonferrous Met. Soc. China. 2015, 25, 490.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjs1Wnsbw%3D&md5=4da7a472cf0baa753be37344ea2e88fcCAS |

[37]  Y.-R. Jiang, F.-H. Sun, X.-Y. Zhou, W.-B. Kong, X.-Y. Xie, Chin. Chem. Lett. 2015, 26, 1121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotlGgs7s%3D&md5=9cd70df1e723307da0dfa0a3fd4cb640CAS |

[38]  N. Ahmed, Z. N. Siddiqui, J. Mol. Catal. Chem. 2014, 394, 232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWjur7K&md5=672e6b2e12f95a103ef64c0dd71d972fCAS |

[39]  L. El-Hammari, H. Marroun, A. Laghzizil, A. Saoiabi, C. Roux, J. Livage, T. Coradin, J. Solid State Chem. 2008, 181, 848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlalsro%3D&md5=72807b8e7cdcc467333c9422766c950cCAS |

[40]  B. Movassagh, S. Shokri, Tetrahedron Lett. 2005, 46, 6923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFykurk%3D&md5=6092cc0783db84448da46ffb70b87738CAS |

[41]  N. Coskun, Synth. Commun. 2004, 34, 1625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVSjs7o%3D&md5=e57b4efd930a634231b30ecf6dcddd62CAS |

[42]  X. C. Wang, L. Li, Z. J. Quan, H. P. Gong, H. L. Ye, X. F. Cao, Chin. Chem. Lett. 2009, 20, 651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFKrur0%3D&md5=cb13b03d457308ba114654fe36d522fdCAS |

[43]  U. Patil, A. Kuwar, A. Nikum, K. Desale, P. Mahulikar, Int. J. Chem. Tech. Res. 2013, 5, 24.
         | 1:CAS:528:DC%2BC3sXisVyktb4%3D&md5=7b36c43b4a44b45a2af2b6290b9520a0CAS |

[44]  H. S. Kim, S. H. Kim, J. N. Kim, Tetrahedron Lett. 2009, 50, 1717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVOgt7Y%3D&md5=94ebde5b2355e4e523eec07e17368985CAS |

[45]  X. Wei, D. Quansheng, C. Jiuxi, D. Jinchang, W. Huayue, J. Chem. Res. 2010, 7, 395.

[46]  A. Ghorbani-Choghamarani, M. A. Zolfigol, M. Hajjami, S. Sardari, Synth. Commun. 2013, 43, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWgurjO&md5=c88a1a240999f20e54896d5dc217a645CAS |

[47]  N. Jiang, A. J. Ragauskas, Tetrahedron Lett. 2010, 51, 4479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlWrsbo%3D&md5=bc8849af204fa148205325aaf1d9089dCAS |

[48]  N. D. Kokare, D. B. Shinde, Monatsh. Chem. 2009, 140, 185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvVaisQ%3D%3D&md5=e641bd6238e9a67d6e2d1ff59e07dadfCAS |

[49]  N. Lingaiah, R. Narender, Synth. Commun. 2002, 32, 2391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtFartLY%3D&md5=e6c5adef8dd71869b7d2fcaa867850e4CAS |

[50]  A. R. Sardarian, Z. Shahsavari Fard, H. R. Shahsavari, Z. Ebrahimi, Tetrahedron Lett. 2007, 48, 2639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Ohtb4%3D&md5=6a0a871fa65d60a90a9e47f96a583176CAS |

[51]  M. Heravi, S. Sadjadi, R. Hekmatshoar, H. Oskooie, F. Bamoharram, Chin. J. Chem. 2009, 27, 607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Kjurw%3D&md5=3d32b76547715b21eaef3989081f88acCAS |

[52]  N. S. Nandurkar, B. M. Bhanage, Tetrahedron 2008, 64, 3655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlyru7w%3D&md5=c91121adfdee83de18f0d471244dc728CAS |

[53]  M. Dreisbach, Ind. Eng. Chem. 1949, 41, 2876.

[54]  J. A. Campbell, G. McDougald, H. McNab, L. V. C. Rees, R. G. Tyas, Synthesis 2007, 3179.
         | 1:CAS:528:DC%2BD2sXhtlShtLjI&md5=d2205a66de05ece61eecc310ce555e25CAS |

[55]  T. Delcourt, J. Chim. Phys. 1934, 31, 110.