Synthesis, Crystal Structure, and Theoretical Calculations of Two Cobalt, Nickel Coordination Polymers with 5-Nitroisophthalic Acid and Bis(imidazol) Ligands
Ya-Ru Pan A , Xiu-Mei Li A C , Jian-Ye Ji A and Qing-Wei Wang BA Faculty of Chemistry, Tonghua Normal University, Tonghua 134002, China.
B Key Laboratory of Preparation and Applications of Environmentally Friendly Materials, Ministry of Education, Jilin Normal University, Siping 136000, China.
C Corresponding author. Email: lixm20032006@163.com
Australian Journal of Chemistry 69(11) 1296-1304 https://doi.org/10.1071/CH16110
Submitted: 24 February 2016 Accepted: 9 May 2016 Published: 8 June 2016
Abstract
Two new complexes [Co(NIPH)(bimb)(H2O)]n (1) and [Ni(NIPH)(mbix)]n (2) (H2NIPH = 5-nitroisophthalic acid, bimb = 1,4-bis(imidazol-1-yl)butane, mbix = 1,3-bis(imidazol-1-ylmethyl)benzene) have been hydrothermally synthesised and structurally characterised by elemental analysis, IR spectroscopy, thermogravimetric analysis, UV spectroscopy, and single-crystal X-ray diffraction. Complex 1 exhibits a two-dimensional (2D) network, which was stabilised through O–H···O and C–H···O hydrogen-bonding interactions. Complex 2 shows a two-dimensional (2D) network structure, which was further extended into a three-dimensional supramolecular structure through C–H···O hydrogen bonds and π–π interactions. Moreover, we analysed the natural bond orbital (NBO) using the PBE0/LANL2DZ method in the Gaussian 03 program. The calculation results indicated the obvious covalent interactions between the coordinated atoms and the CoII or NiII ion.
References
[1] P. J. Hagrman, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 1999, 38, 2638.| Crossref | GoogleScholarGoogle Scholar |
[2] A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, M. Schroder, Coord. Chem. Rev. 1999, 183, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslarsr0%3D&md5=64766f17f615efcc793d63f9bed36abcCAS |
[3] B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlyqtrg%3D&md5=1306623895613c177572cdabc8fbdf14CAS | 11709994PubMed |
[4] C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem. Int. Ed. 2004, 43, 1466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisl2hsbo%3D&md5=508842c865d6a8136a864a7719eebd1cCAS |
[5] S. Kitagawa, R. Kitaura, S. I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFShtLk%3D&md5=9fd4eb762a6ccec40ec9897669ef6243CAS |
[6] B. L. Chen, N. W. Ockwig, F. R. Fronczek, D. S. Contreras, O. M. Yaghi, Inorg. Chem. 2005, 44, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFeqtbg%3D&md5=f9bf0bf6bbf43a3e4b35948e6080eb99CAS |
[7] S. Yang, X. Lin, A. J. Blake, K. M. Thomas, P. Hubberstey, N. R. Champness, M. Schröder, Chem. Commun. 2008, 44, 6108.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. S. Choi, M. P. Suh, Angew. Chem. Int. Ed. 2009, 48, 6865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrtrvI&md5=b851caff8ce0bb9753518af9da240daeCAS |
[9] B. L. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4745.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVSqsLY%3D&md5=6bce9a821ea4101b1544df8d26a8d4caCAS |
[10] J. L. Liu, W. Q. Lin, Y. C. Chen, J. D. Leng, F. S. Guo, M. L. Tong, Inorg. Chem. 2013, 52, 457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyksb%2FN&md5=e3a913923a0faf27565428c8537f85a2CAS | 23265138PubMed |
[11] P. H. Guo, J. L. Liu, Z. M. Zhang, L. Ungur, L. F. Chibotaru, J. D. Leng, F. S. Guo, M. L. Tong, Inorg. Chem. 2012, 51, 1233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVWisw%3D%3D&md5=dab63e70d96df0333c5f223838137a2dCAS | 22239617PubMed |
[12] X. Bao, P. H. Guo, W. Liu, J. Tucek, W. X. Zhang, J. D. Leng, X. M. Chen, I. Gural’skiy, L. Salmon, A. Bousseksou, M. L. Tong, Chem. Sci. 2012, 3, 1629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVKrtr8%3D&md5=2714d814cd6de10d9a81ce67c5de00f2CAS |
[13] X. L. Zhao, D. Sun, S. Yuan, S. Y. Feng, R. Cao, D. Q. Yuan, S. N. Wang, J. M. Dou, D. F. Sun, Inorg. Chem. 2012, 51, 10350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOjtbbO&md5=ad42380e216242d0b21baad41f920a63CAS |
[14] S. N. Wang, Y. Q. Peng, X. L. Wei, Q. F. Zhang, D. Q. Wang, J. M. Dou, D. C. Li, J. F. Bai, CrystEngComm 2011, 13, 5313.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOlu7rL&md5=61df63c42f780beba5287c92feacbc46CAS |
[15] L. M. Fan, X. T. Zhang, D. C. Li, D. Sun, W. Zhang, J. M. Dou, CrystEngComm 2013, 15, 349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSmtrnI&md5=2a52caf2eef46dce5067a3f806c85e84CAS |
[16] C. X. Chen, Q. K. Liu, J. P. Ma, Y. B. Dong, J. Mater. Chem. 2012, 22, 9027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltlGmu7g%3D&md5=342971940975db5a57ebcdae07f7fbd4CAS |
[17] T. Liu, S. Wang, J. Lu, J. Dou, M. Niu, D. Li, J. Bai, CrystEngComm 2013, 15, 5476.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1ygs7g%3D&md5=32146a1f9a8c3e4467a4b019ef5bc5f2CAS |
[18] M. L. Han, L. Bai, P. Tang, Y. P. Wu, J. Zhao, D. S. Li, Y. Y. Wang, Dalton Trans. 2015, 44, 14673.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFKisbjF&md5=1b91348eb118fe91e470ab1bfae3253fCAS | 26213094PubMed |
[19] M. L. Han, Y. P. Duan, D. S. Li, G. W. Xu, Y. P. Wu, J. Z. Zhao, Dalton Trans. 2014, 43, 17519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFShtbbJ&md5=4e1ea2c9f39dcd0b1b95e0147ef9142bCAS | 25347690PubMed |
[20] M. L. Han, X. H. Chang, X. Feng, L. F. Ma, L. Y. Wang, CrystEngComm 2014, 16, 1687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFWhurw%3D&md5=6b3341d571db587ce37ae78afa3c7b58CAS |
[21] M. L. Han, J. G. Wang, L. F. Ma, H. Guo, L. Y. Wang, CrystEngComm 2012, 14, 2691.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFeltr4%3D&md5=5bb98f0443cc7e2b413451c2dcb11c96CAS |
[22] L. F. Ma, L. Y. Wang, Y. Y. Wang, M. Du, J. G. Wang, CrystEngComm 2009, 11, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrtw%3D%3D&md5=0424b5b4fae2e220626adc02a91f643cCAS |
[23] M. Suh, Y. Cheon, E. Lee, Coord. Chem. Rev. 2008, 252, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVGgtLs%3D&md5=65a8254afae6def8631e8e69ced4c96bCAS |
[24] Y. J. Cui, Y. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKitr8%3D&md5=c83d8fe1a05700b3e52892cf93c3fc9bCAS |
[25] C. G. Silva, A. Corma, H. Garcia, J. Mater. Chem. 2010, 20, 3141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Kkurc%3D&md5=5fb32568ea89e26e589ff3c644bc46ebCAS |
[26] A. Thirumurugan, S. Natarajan, J. Mater. Chem. 2005, 15, 4588.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKqt77K&md5=bd6a1d0b43e9954ab22ccb5d80b3433bCAS |
[27] L. B. Sun, Y. Li, Z. Q. Liang, J. H. Yu, R. R. Xu, Dalton Trans. 2012, 41, 12790.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKjtr7E&md5=e9fbbc2a838f77ab3aba90b7d95e6447CAS |
[28] G. Liu, H. Li, CrystEngComm 2013, 15, 6870.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WlurvN&md5=a95be35b5e8ff1df5fcfe630109e1448CAS |
[29] J. J. Wang, T. T. Wang, L. Tang, X. Y. Hou, L. J. Gao, F. Fu, M. L. Zhang, J. Coord. Chem. 2013, 66, 3979.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ynu7%2FK&md5=9bb73a325be58a7a81310f141bfd608aCAS |
[30] J. J. Wang, D. J. Zhang, R. C. Zhang, H. H. Jin, X. F. Gao, Z. Anorg. Allg. Chem. 2014, 640, 497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsleitL7P&md5=d16542eee932a15152c73ae24cea5c1eCAS |
[31] H. Wang, Y. Y. Wang, G. P. Yang, C. J. Wang, G. L. Wen, Q. Z. Shi, S. R. Batten, CrystEngComm 2008, 10, 1583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGltLbE&md5=5757c2383c02c71cb4dd7ca57f697677CAS |
[32] S. P. Chen, Y. X. Ren, W. T. Wang, S. L. Gao, Dalton Trans. 2010, 39, 1552.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFalsLs%3D&md5=a743c1b3a08955c5c8f027a86cbcbfc0CAS | 20104317PubMed |
[33] X. M. Li, J. Y. Ji, Y. L. Niu, Z. T. Wang, Wuji Huaxue Xuebao 2013, 29, 165.
[34] Y. Y. Liu, J. F. Ma, J. Yang, Z. M. Su, Inorg. Chem. 2007, 46, 3027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislKkur0%3D&md5=3952186af13e2aac653182763794cae4CAS | 17358053PubMed |
[35] Y. Qi, Y. X. Che, J. M. Zhen, Cryst. Growth Des. 2008, 8, 3602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWksL7E&md5=358e692c1321bb8c03e81cbe77e9d344CAS |
[36] X. M. Li, J. Y. Ji, Y. L. Niu, Q. W. Wang, Z. T. Wang, Wuji Huaxue Xuebao 2013, 29, 1302.
| 1:CAS:528:DC%2BC3sXhtlWrsLbK&md5=0605e3bf79667d725cbd64a04a8cd1faCAS |
[37] Z. T. Wang, J. Y. Ji, X. M. Li, Y. L. Niu, Q. W. Wang, B. Liu, Chinese J. Struct. Chem. 2013, 32, 296.
| 1:CAS:528:DC%2BC3sXhtVGmurnN&md5=73253da6adfde72deff0f85cae7561d0CAS |
[38] Y. H. Zhou, Y. P. Tian, J. Chem. Crystallogr. 2013, 43, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKmtLfL&md5=e3c902872a075102879b56e145c2608bCAS |
[39] X. M. Li, J. Y. Ji, Y. L. Niu, Q. W. Wang, Z. T. Wang, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2014, 44, 891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1ykuw%3D%3D&md5=b1e226c968f69e66ea72f4327e426eb3CAS |
[40] Z. Z. Hu, J. Zhao, X. J. Ke, Q. F. He, C. Li, D. S. Li, Wuji Huaxue Xuebao 2011, 27, 184.
| 1:CAS:528:DC%2BC3MXhsFGhsr0%3D&md5=f9b4f0eb4f7bc6db4da313fca1fea9afCAS |
[41] G. M. Sheldrick, SHELXS-97: Programs for X-Ray Crystal Structure Solution 1997 (University of Göttingen: Göttingen).
[42] G. M. Sheldrick, SHELXL-97: Programs for X-Ray Crystal Structure Refinement 1997 (University of Göttingen: Göttingen).
[43] M. Devereux, D. O. Shea, A. Kellett, M. McCann, M. Walsh, D. Egan, C. Deegan, K. Kędziora, G. Rosair, H. Müller-Bunz, J. Inorg. Biochem. 2007, 101, 881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVOmtro%3D&md5=d93b9828b65539eadf03251eba0cfe20CAS | 17397929PubMed |
[44] L. J. Farrugia, X. A. Wing, Windows Program for Crystal Structure Analysis 1988 (University of Glasgow: Glasgow).
[45] L. J. Bellamy, The Infrared Spectra of Complex Molecules 1958 (John Wiley: New York, NY).
[46] M. J. Krische, J.-M. Lehn, in Molecular Self-Assembly Organic Versus Inorganic Approaches (Ed. M. Fuiita) 2000, Vol. 96, pp. 3–29 (Springer: Berlin).
[47] A. Gilbert, J. Baggott, Essentials of Molecular Photochemistry 1991 (CRC Press: Boca Raton, FL).
[48] G. G. Mohamed, N. E. A. El-Gamel, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2004, 60, 3141.
| Crossref | GoogleScholarGoogle Scholar |
[49] M. M. Dong, L. L. He, Y. J. Fan, S. Q. Zang, H. W. Hou, T. C. W. Mak, Cryst. Growth Des. 2013, 13, 3353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGqsrvJ&md5=1594c801a74d634a887a646010931843CAS |
[50] Z. Q. Shi, Y. Z. Li, Z. J. Guo, H. G. Zheng, Cryst. Growth Des. 2013, 13, 3078.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVertLY%3D&md5=6f3455fc5d297abb7c4ac699ddb4432aCAS |
[51] C. R. K. Glasson, G. V. Meehan, C. A. Motti, J. K. Clegg, P. Truner, P. Jensen, L. F. Lindoy, Dalton Trans. 2011, 40, 10481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kkt7rI&md5=45b799161746622984004597473d6e5aCAS |
[52] S. Pandey, P. P. Das, A. K. Singh, R. Mukherjee, Dalton Trans. 2011, 40, 10758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kkt73E&md5=ef1b28eef7e44af0ee182e9a48f279d9CAS | 21952226PubMed |
[53] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.03 2003 (Gaussian Inc.: Pittsburgh, PA).
[54] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules 1989 (Oxford University Press: Oxford).
[55] M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 110, 5029.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFWquro%3D&md5=34866834e930cc441736de664916ff23CAS |
[56] C. Adamo, V. J. Barone, Chem. Phys. 1999, 110, 6158.
| 1:CAS:528:DyaK1MXitVCmt7Y%3D&md5=eb685a60ae227e8a03f08433e846a77eCAS |
[57] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=80e9e7f93c4d868c24426c2d2790225cCAS | 10062328PubMed |
[58] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1Gns7o%3D&md5=d3bf3af88893c60749d96d5d1f065d41CAS |
[59] T. H. Dunning, P. J. Hay, Jr, in Modern Theoretical Chemistry (Ed. H. F. Schaefer III) 1976, pp. 1–28 (Plenum: New York, NY).
[60] L. Wang, J. Zhao, L. Ni, J. Yao, J. Inorg. Gen. Chem. 2012, 638, 224.
| 1:CAS:528:DC%2BC3MXhsVOgs7zJ&md5=9e104b5e202f6ad8c1aa507158f52a93CAS |
[61] Z. P. Li, Y. H. Xing, Y. H. Zhang, Wuli Huaxue Xuebao 2009, 25, 741.
| 1:CAS:528:DC%2BD1MXkslChtrg%3D&md5=a0310e18fb907ca7c4d83f896fa3479cCAS |