Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Crystal Structure, and Theoretical Calculations of Two Cobalt, Nickel Coordination Polymers with 5-Nitroisophthalic Acid and Bis(imidazol) Ligands

Ya-Ru Pan A , Xiu-Mei Li A C , Jian-Ye Ji A and Qing-Wei Wang B
+ Author Affiliations
- Author Affiliations

A Faculty of Chemistry, Tonghua Normal University, Tonghua 134002, China.

B Key Laboratory of Preparation and Applications of Environmentally Friendly Materials, Ministry of Education, Jilin Normal University, Siping 136000, China.

C Corresponding author. Email: lixm20032006@163.com

Australian Journal of Chemistry 69(11) 1296-1304 https://doi.org/10.1071/CH16110
Submitted: 24 February 2016  Accepted: 9 May 2016   Published: 8 June 2016

Abstract

Two new complexes [Co(NIPH)(bimb)(H2O)]n (1) and [Ni(NIPH)(mbix)]n (2) (H2NIPH = 5-nitroisophthalic acid, bimb = 1,4-bis(imidazol-1-yl)butane, mbix = 1,3-bis(imidazol-1-ylmethyl)benzene) have been hydrothermally synthesised and structurally characterised by elemental analysis, IR spectroscopy, thermogravimetric analysis, UV spectroscopy, and single-crystal X-ray diffraction. Complex 1 exhibits a two-dimensional (2D) network, which was stabilised through O–H···O and C–H···O hydrogen-bonding interactions. Complex 2 shows a two-dimensional (2D) network structure, which was further extended into a three-dimensional supramolecular structure through C–H···O hydrogen bonds and π–π interactions. Moreover, we analysed the natural bond orbital (NBO) using the PBE0/LANL2DZ method in the Gaussian 03 program. The calculation results indicated the obvious covalent interactions between the coordinated atoms and the CoII or NiII ion.


References

[1]  P. J. Hagrman, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 1999, 38, 2638.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, M. Schroder, Coord. Chem. Rev. 1999, 183, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslarsr0%3D&md5=64766f17f615efcc793d63f9bed36abcCAS |

[3]  B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlyqtrg%3D&md5=1306623895613c177572cdabc8fbdf14CAS | 11709994PubMed |

[4]  C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem. Int. Ed. 2004, 43, 1466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisl2hsbo%3D&md5=508842c865d6a8136a864a7719eebd1cCAS |

[5]  S. Kitagawa, R. Kitaura, S. I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFShtLk%3D&md5=9fd4eb762a6ccec40ec9897669ef6243CAS |

[6]  B. L. Chen, N. W. Ockwig, F. R. Fronczek, D. S. Contreras, O. M. Yaghi, Inorg. Chem. 2005, 44, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFeqtbg%3D&md5=f9bf0bf6bbf43a3e4b35948e6080eb99CAS |

[7]  S. Yang, X. Lin, A. J. Blake, K. M. Thomas, P. Hubberstey, N. R. Champness, M. Schröder, Chem. Commun. 2008, 44, 6108.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  H. S. Choi, M. P. Suh, Angew. Chem. Int. Ed. 2009, 48, 6865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrtrvI&md5=b851caff8ce0bb9753518af9da240daeCAS |

[9]  B. L. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4745.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVSqsLY%3D&md5=6bce9a821ea4101b1544df8d26a8d4caCAS |

[10]  J. L. Liu, W. Q. Lin, Y. C. Chen, J. D. Leng, F. S. Guo, M. L. Tong, Inorg. Chem. 2013, 52, 457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyksb%2FN&md5=e3a913923a0faf27565428c8537f85a2CAS | 23265138PubMed |

[11]  P. H. Guo, J. L. Liu, Z. M. Zhang, L. Ungur, L. F. Chibotaru, J. D. Leng, F. S. Guo, M. L. Tong, Inorg. Chem. 2012, 51, 1233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVWisw%3D%3D&md5=dab63e70d96df0333c5f223838137a2dCAS | 22239617PubMed |

[12]  X. Bao, P. H. Guo, W. Liu, J. Tucek, W. X. Zhang, J. D. Leng, X. M. Chen, I. Gural’skiy, L. Salmon, A. Bousseksou, M. L. Tong, Chem. Sci. 2012, 3, 1629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVKrtr8%3D&md5=2714d814cd6de10d9a81ce67c5de00f2CAS |

[13]  X. L. Zhao, D. Sun, S. Yuan, S. Y. Feng, R. Cao, D. Q. Yuan, S. N. Wang, J. M. Dou, D. F. Sun, Inorg. Chem. 2012, 51, 10350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOjtbbO&md5=ad42380e216242d0b21baad41f920a63CAS |

[14]  S. N. Wang, Y. Q. Peng, X. L. Wei, Q. F. Zhang, D. Q. Wang, J. M. Dou, D. C. Li, J. F. Bai, CrystEngComm 2011, 13, 5313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOlu7rL&md5=61df63c42f780beba5287c92feacbc46CAS |

[15]  L. M. Fan, X. T. Zhang, D. C. Li, D. Sun, W. Zhang, J. M. Dou, CrystEngComm 2013, 15, 349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSmtrnI&md5=2a52caf2eef46dce5067a3f806c85e84CAS |

[16]  C. X. Chen, Q. K. Liu, J. P. Ma, Y. B. Dong, J. Mater. Chem. 2012, 22, 9027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltlGmu7g%3D&md5=342971940975db5a57ebcdae07f7fbd4CAS |

[17]  T. Liu, S. Wang, J. Lu, J. Dou, M. Niu, D. Li, J. Bai, CrystEngComm 2013, 15, 5476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1ygs7g%3D&md5=32146a1f9a8c3e4467a4b019ef5bc5f2CAS |

[18]  M. L. Han, L. Bai, P. Tang, Y. P. Wu, J. Zhao, D. S. Li, Y. Y. Wang, Dalton Trans. 2015, 44, 14673.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFKisbjF&md5=1b91348eb118fe91e470ab1bfae3253fCAS | 26213094PubMed |

[19]  M. L. Han, Y. P. Duan, D. S. Li, G. W. Xu, Y. P. Wu, J. Z. Zhao, Dalton Trans. 2014, 43, 17519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFShtbbJ&md5=4e1ea2c9f39dcd0b1b95e0147ef9142bCAS | 25347690PubMed |

[20]  M. L. Han, X. H. Chang, X. Feng, L. F. Ma, L. Y. Wang, CrystEngComm 2014, 16, 1687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFWhurw%3D&md5=6b3341d571db587ce37ae78afa3c7b58CAS |

[21]  M. L. Han, J. G. Wang, L. F. Ma, H. Guo, L. Y. Wang, CrystEngComm 2012, 14, 2691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFeltr4%3D&md5=5bb98f0443cc7e2b413451c2dcb11c96CAS |

[22]  L. F. Ma, L. Y. Wang, Y. Y. Wang, M. Du, J. G. Wang, CrystEngComm 2009, 11, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrtw%3D%3D&md5=0424b5b4fae2e220626adc02a91f643cCAS |

[23]  M. Suh, Y. Cheon, E. Lee, Coord. Chem. Rev. 2008, 252, 1007.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVGgtLs%3D&md5=65a8254afae6def8631e8e69ced4c96bCAS |

[24]  Y. J. Cui, Y. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKitr8%3D&md5=c83d8fe1a05700b3e52892cf93c3fc9bCAS |

[25]  C. G. Silva, A. Corma, H. Garcia, J. Mater. Chem. 2010, 20, 3141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Kkurc%3D&md5=5fb32568ea89e26e589ff3c644bc46ebCAS |

[26]  A. Thirumurugan, S. Natarajan, J. Mater. Chem. 2005, 15, 4588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKqt77K&md5=bd6a1d0b43e9954ab22ccb5d80b3433bCAS |

[27]  L. B. Sun, Y. Li, Z. Q. Liang, J. H. Yu, R. R. Xu, Dalton Trans. 2012, 41, 12790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKjtr7E&md5=e9fbbc2a838f77ab3aba90b7d95e6447CAS |

[28]  G. Liu, H. Li, CrystEngComm 2013, 15, 6870.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WlurvN&md5=a95be35b5e8ff1df5fcfe630109e1448CAS |

[29]  J. J. Wang, T. T. Wang, L. Tang, X. Y. Hou, L. J. Gao, F. Fu, M. L. Zhang, J. Coord. Chem. 2013, 66, 3979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ynu7%2FK&md5=9bb73a325be58a7a81310f141bfd608aCAS |

[30]  J. J. Wang, D. J. Zhang, R. C. Zhang, H. H. Jin, X. F. Gao, Z. Anorg. Allg. Chem. 2014, 640, 497.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsleitL7P&md5=d16542eee932a15152c73ae24cea5c1eCAS |

[31]  H. Wang, Y. Y. Wang, G. P. Yang, C. J. Wang, G. L. Wen, Q. Z. Shi, S. R. Batten, CrystEngComm 2008, 10, 1583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGltLbE&md5=5757c2383c02c71cb4dd7ca57f697677CAS |

[32]  S. P. Chen, Y. X. Ren, W. T. Wang, S. L. Gao, Dalton Trans. 2010, 39, 1552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFalsLs%3D&md5=a743c1b3a08955c5c8f027a86cbcbfc0CAS | 20104317PubMed |

[33]  X. M. Li, J. Y. Ji, Y. L. Niu, Z. T. Wang, Wuji Huaxue Xuebao 2013, 29, 165.

[34]  Y. Y. Liu, J. F. Ma, J. Yang, Z. M. Su, Inorg. Chem. 2007, 46, 3027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislKkur0%3D&md5=3952186af13e2aac653182763794cae4CAS | 17358053PubMed |

[35]  Y. Qi, Y. X. Che, J. M. Zhen, Cryst. Growth Des. 2008, 8, 3602.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWksL7E&md5=358e692c1321bb8c03e81cbe77e9d344CAS |

[36]  X. M. Li, J. Y. Ji, Y. L. Niu, Q. W. Wang, Z. T. Wang, Wuji Huaxue Xuebao 2013, 29, 1302.
         | 1:CAS:528:DC%2BC3sXhtlWrsLbK&md5=0605e3bf79667d725cbd64a04a8cd1faCAS |

[37]  Z. T. Wang, J. Y. Ji, X. M. Li, Y. L. Niu, Q. W. Wang, B. Liu, Chinese J. Struct. Chem. 2013, 32, 296.
         | 1:CAS:528:DC%2BC3sXhtVGmurnN&md5=73253da6adfde72deff0f85cae7561d0CAS |

[38]  Y. H. Zhou, Y. P. Tian, J. Chem. Crystallogr. 2013, 43, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKmtLfL&md5=e3c902872a075102879b56e145c2608bCAS |

[39]  X. M. Li, J. Y. Ji, Y. L. Niu, Q. W. Wang, Z. T. Wang, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2014, 44, 891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1ykuw%3D%3D&md5=b1e226c968f69e66ea72f4327e426eb3CAS |

[40]  Z. Z. Hu, J. Zhao, X. J. Ke, Q. F. He, C. Li, D. S. Li, Wuji Huaxue Xuebao 2011, 27, 184.
         | 1:CAS:528:DC%2BC3MXhsFGhsr0%3D&md5=f9b4f0eb4f7bc6db4da313fca1fea9afCAS |

[41]  G. M. Sheldrick, SHELXS-97: Programs for X-Ray Crystal Structure Solution 1997 (University of Göttingen: Göttingen).

[42]  G. M. Sheldrick, SHELXL-97: Programs for X-Ray Crystal Structure Refinement 1997 (University of Göttingen: Göttingen).

[43]  M. Devereux, D. O. Shea, A. Kellett, M. McCann, M. Walsh, D. Egan, C. Deegan, K. Kędziora, G. Rosair, H. Müller-Bunz, J. Inorg. Biochem. 2007, 101, 881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVOmtro%3D&md5=d93b9828b65539eadf03251eba0cfe20CAS | 17397929PubMed |

[44]  L. J. Farrugia, X. A. Wing, Windows Program for Crystal Structure Analysis 1988 (University of Glasgow: Glasgow).

[45]  L. J. Bellamy, The Infrared Spectra of Complex Molecules 1958 (John Wiley: New York, NY).

[46]  M. J. Krische, J.-M. Lehn, in Molecular Self-Assembly Organic Versus Inorganic Approaches (Ed. M. Fuiita) 2000, Vol. 96, pp. 3–29 (Springer: Berlin).

[47]  A. Gilbert, J. Baggott, Essentials of Molecular Photochemistry 1991 (CRC Press: Boca Raton, FL).

[48]  G. G. Mohamed, N. E. A. El-Gamel, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2004, 60, 3141.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  M. M. Dong, L. L. He, Y. J. Fan, S. Q. Zang, H. W. Hou, T. C. W. Mak, Cryst. Growth Des. 2013, 13, 3353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGqsrvJ&md5=1594c801a74d634a887a646010931843CAS |

[50]  Z. Q. Shi, Y. Z. Li, Z. J. Guo, H. G. Zheng, Cryst. Growth Des. 2013, 13, 3078.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVertLY%3D&md5=6f3455fc5d297abb7c4ac699ddb4432aCAS |

[51]  C. R. K. Glasson, G. V. Meehan, C. A. Motti, J. K. Clegg, P. Truner, P. Jensen, L. F. Lindoy, Dalton Trans. 2011, 40, 10481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kkt7rI&md5=45b799161746622984004597473d6e5aCAS |

[52]  S. Pandey, P. P. Das, A. K. Singh, R. Mukherjee, Dalton Trans. 2011, 40, 10758.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kkt73E&md5=ef1b28eef7e44af0ee182e9a48f279d9CAS | 21952226PubMed |

[53]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.03 2003 (Gaussian Inc.: Pittsburgh, PA).

[54]  R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules 1989 (Oxford University Press: Oxford).

[55]  M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 110, 5029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFWquro%3D&md5=34866834e930cc441736de664916ff23CAS |

[56]  C. Adamo, V. J. Barone, Chem. Phys. 1999, 110, 6158.
         | 1:CAS:528:DyaK1MXitVCmt7Y%3D&md5=eb685a60ae227e8a03f08433e846a77eCAS |

[57]  J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=80e9e7f93c4d868c24426c2d2790225cCAS | 10062328PubMed |

[58]  J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1Gns7o%3D&md5=d3bf3af88893c60749d96d5d1f065d41CAS |

[59]  T. H. Dunning, P. J. Hay, Jr, in Modern Theoretical Chemistry (Ed. H. F. Schaefer III) 1976, pp. 1–28 (Plenum: New York, NY).

[60]  L. Wang, J. Zhao, L. Ni, J. Yao, J. Inorg. Gen. Chem. 2012, 638, 224.
         | 1:CAS:528:DC%2BC3MXhsVOgs7zJ&md5=9e104b5e202f6ad8c1aa507158f52a93CAS |

[61]  Z. P. Li, Y. H. Xing, Y. H. Zhang, Wuli Huaxue Xuebao 2009, 25, 741.
         | 1:CAS:528:DC%2BD1MXkslChtrg%3D&md5=a0310e18fb907ca7c4d83f896fa3479cCAS |