Two Different Barium(ii) 2D Coordination Polymers Constructed with Pyrazine-2,3-Dicarboxylate: Synthesis, Crystal Structures, and Thermal Decomposition to Barium(ii) Carbonate Nanoparticles
Masoumeh Tabatabaee A C , Boris-Marko Kukovec B , Saeed Amjad A and Masoud R. Shishebor AA Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd 891616392, Iran.
B Laboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.
C Corresponding author. Email: tabatabaee@iauyazd.ac.ir
Australian Journal of Chemistry 69(11) 1261-1267 https://doi.org/10.1071/CH16091
Submitted: 16 February 2016 Accepted: 26 April 2016 Published: 10 June 2016
Abstract
Two novel barium(ii) 2D coordination polymers, {[Ba(µ-H2O)(H2O)2(µ-pyzdc)]}n (1) and {[Ba(H2O)2(µ-Hpyzdc)(Hpyzdc)]2H2O}n (2) (pyzdcH2 = pyrazine-2,3-dicarboxylic acid), were prepared by reaction of barium(ii) chloride dihydrate and pyrazine-2,3-dicarboxylic acid under similar experimental conditions (slightly different pH values) and characterised by elemental analysis, IR spectroscopy, and thermogravimetric analysis/differential thermal analysis methods. Their crystal structures were determined by single-crystal X-ray structure analysis and it was revealed that the barium(ii) ion has a distorted bicapped square antiprismatic coordination geometry in 1 and a distorted tricapped trigonal prismatic geometry in 2, composed of water molecules, carboxylate O, and pyrazine N atoms in both cases. The polymers 1 and 2 have different connectivity, as the pyrazine-2,3-dicarboxylate ion acts as multidentate bridging ligand in both 1 and 2, but also as an N,O′-bidentate terminal ligand in 2. There are terminal coordinated water molecules in both 1 and 2, but bridging water molecules are present only in 1 and water molecules of crystallisation only in 2. BaCO3 nanoparticles were formed by thermal decomposition of 1 in the presence of polyethylene glycol, and their structure and morphology were studied by powder X-ray diffraction and scanning electron microscopy. According to the powder X-ray diffraction pattern, BaCO3 was formed with an orthorhombic witherite structure.
References
[1] Q.-L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Slu7jE&md5=2f8c0bddef43281b02591ea5427b8442CAS | 24638055PubMed |
[2] Z. Ma, B. Moulton, Coord. Chem. Rev. 2011, 255, 1623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVGgtbg%3D&md5=055cbb9e9c48f6a4c0110395ce6d0bc8CAS |
[3] K. Biradha, A. Ramanan, J. J. Vittal, Cryst. Growth Des. 2009, 9, 2969.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvV2kt7Y%3D&md5=37d7ee93cb3df0ac7bcf69059dbbfb12CAS |
[4] R. Carballo, B. Covelo, E. García-Martínez, A. B. Lago, E. M. Vázquez-López, Polyhedron 2009, 28, 923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Snu78%3D&md5=5e11c6aec417ced8689fab612fa6f6c9CAS |
[5] K. M. Blake, G. A. Farnum, L. L. Johnston, R. L. LaDuca, Inorg. Chim. Acta 2010, 363, 88.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2jsLjK&md5=ef0949cc70705c363bb775890edd0e10CAS |
[6] G. A. Farnum, D. P. Martin, R. M. Supkowski, R. L. LaDuca, J. Mol. Struct. 2009, 927, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVCjtbo%3D&md5=354d77bd2098502d9c9571159e0f606cCAS |
[7] R. Carballo, B. Covelo, E. García-Martínez, A. B. Lago, E. M. Vázquez-López, Polyhedron 2009, 28, 923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Snu78%3D&md5=5e11c6aec417ced8689fab612fa6f6c9CAS |
[8] K. M. Blake, G. A. Farnum, L. L. Johnston, R. L. LaDuca, Inorg. Chim. Acta 2010, 363, 88.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2jsLjK&md5=ef0949cc70705c363bb775890edd0e10CAS |
[9] S. C. Mojumdar, K. Lebruškova, D. Valigura, Chem. Pap. 2003, 57, 245.
| 1:CAS:528:DC%2BD3sXosFOgsrw%3D&md5=81507e76b65ef03e810cfefd5e32200bCAS |
[10] S. Taşcıoğlu, A. Aydın, B. Yalçın, E. Kakı, Ö. Andaç, O. Büyükgüngör, B. Koşar, Polyhedron 2011, 30, 2171.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y.-Y. Liu, G.-S. Zhu, G.-Z. Fan, S.-L. Qiu, Acta Crystallogr. 2007, C63, m159.
[12] H. Yin, Acta Crystallogr. 2009, E65, m971.
[13] A. L. Magrì, A. D. Magrì, F. Balestrieri, E. Cardarelli, G. D’Ascenzo, Thermochim. Acta 1981, 48, 253.
| Crossref | GoogleScholarGoogle Scholar |
[14] C. J. O’Connor, E. Sinn, Inorg. Chem. 1981, 20, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXnsFSjtg%3D%3D&md5=ba8cd2c5bffc6f816b8d3d77e4d0bacbCAS |
[15] X.-M. Lin, L. Chen, H.-C. Fang, Z.-Y. Zhou, X.-X. Zhou, J.-Q. Chen, A.-W. Xu, Y.-P. Cai, Inorg. Chim. Acta 2009, 362, 2619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2itr8%3D&md5=12cfcaecc09f1f39670fff9913495ed3CAS |
[16] Q. Shuai, K.-L. Ding, F. Hu, P. Yu, Acta Crystallogr. 2011, E67, m283.
[17] P. Wang, G. Wu, J. Yuan, X. Wang, J. Inorg. Organomet. Polym. Mater. 2013, 23, 1153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2ks73I&md5=103a519d3603908062127e1c449becb8CAS |
[18] H. Pasdar, S. Siabi, B. Notash, H. Aghabozorg, N. Foroughifar, Acta Crystallogr. 2011, E67, m848.
[19] Q. Shuai, X.-N. Zhao, L. Zhao, F. Hu, Acta Crystallogr. 2010, E66, m832.
[20] D. Saha, T. Maity, R. Sen, S. Koner, Polyhedron 2012, 43, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVSks7g%3D&md5=6099c555ea948ec0e0efdf7e919bbf41CAS |
[21] M. K. Kim, K. M. Ok, CrystEngComm 2011, 13, 4599.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVWmurY%3D&md5=8bea8aece8a6db284d89596286764d63CAS |
[22] M. C. Das, S. K. Ghosh, E. C. Sanudo, P. K. Bharadwaj, Dalton Trans. 2009, 1644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGqtbo%3D&md5=576b30d5f916554816503dc25063f71dCAS | 19421610PubMed |
[23] S. Zhang, X.-N. Qu, G. Xie, Q. Wei, S.-P. Chen, J. Solid State Chem. 2014, 210, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksFWktw%3D%3D&md5=f2e7a03a6f6d0b929bb007a77b3cf2baCAS |
[24] G. Wu, F. J. Yin, H.-H. Li, L. Guo, J. Chem. Crystallogr. 2012, 42, 680.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovV2nu7o%3D&md5=4c08ec38b55797d262393e9952d0f718CAS |
[25] See p. 22 in: Comprehensive Coordination Chemistry (Eds T. J. Meyer, J. A. McCleverty) 2004 (Elsevier: New York, NY).
[26] N. Soltanzadeh, A. Morsali, Polyhedron 2009, 28, 1343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslKqtro%3D&md5=8f862746128cba05cf26d3290c23623fCAS |
[27] H. Sadeghzadeh, A. Morsali, P. Retailleau, Polyhedron 2010, 29, 925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCitQ%3D%3D&md5=8a49ebb38105ef9dde710268befad569CAS |
[28] B. Folch, J. Larionova, Y. Guari, L. Datas, C. Guérin, J. Mater. Chem. 2006, 16, 4435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2ksLzM&md5=52ee145098bac982bceb72053b4b4ca7CAS |
[29] M. Tabatabaee, M. A. Sharif, F. Vakili, S. Saheli, J. Rare Earths 2009, 27, 356.
| Crossref | GoogleScholarGoogle Scholar |
[30] M. Tabatabaee, A. Gholamighavamabad, E. Khabiri, M. Parvez, J. Inorg. Organomet. Polym. 2011, 21, 627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFeqt7fL&md5=4029804a9e6325567151baaaf5e8815aCAS |
[31] M. Tabatabaee, V. Razavimahmoudabadi, B.-M. Kukovec, M. Ghassemzadeh, B. Neumuller, J. Inorg. Organomet. Polym. 2011, 21, 450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFeqt7jF&md5=b1e5c0e14101bf49aa6dd07da9bd7c73CAS |
[32] M. Tabatabaee, S. Amjad, S. Tabatabaee, K. Molčanov, Synth. React. Inorg., Met.-Org., Nano-Met. Chem 2014, 44, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1amur%2FN&md5=ceadd626756b6c14013624d1e18adf53CAS |
[33] R. Mohammadinasab, M. Tabatabaee, B.-M. Kukovec, H. Aghaie, Inorg. Chim. Acta 2013, 405, 368.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Cgs77M&md5=91cfa99b558c860194f9b34195e87c99CAS |
[34] M. Tabatabaee, R. Mohammadinasab, M. Aghaie, J. Inorg. Organomet. Polym. 2016, 26, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Kju7nN&md5=1baf05deb863f59e566a9a84f1c938f7CAS |
[35] B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, S. Alvarez, Dalton Trans. 2008, 2832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrurY%3D&md5=d725719cbe0c5cd48ea762b3565e7313CAS | 18478144PubMed |
[36] S. Alvarez, Dalton Trans. 2013, 42, 8617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1emur8%3D&md5=434165c73acd3e454da995107b53db71CAS | 23632803PubMed |
[37] G. B. Deacon, R. J. Philips, Coord. Chem. Rev. 1980, 33, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjvVOqsw%3D%3D&md5=1a4f21ada28a455fb3bca4256ac50184CAS |
[38] Ö. Tunusoğlu, T. Shahwan, A. E. Eroğlu, Geochem. J. 2007, 41, 379.
| Crossref | GoogleScholarGoogle Scholar |
[39] Z. Otwinowski, W. Minor, in Methods in Enzymology (Eds C. W. Carter, R. M. Sweet) 1997, Vol. 276, Macromolecular Crystallography, Part A, p. 307 (Academic Press: London).
[40] SAINT 2007 (Bruker AXS Inc.: Madison, WI).
[41] G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=1965db3178cb384357dbea613ab9f64bCAS |
[42] L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1KgsLg%3D&md5=73cc226b6a448ce22eb035dbadda41dcCAS |
[43] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gmtb0%3D&md5=25c5f4b24ba2ca3798a27faf06807d39CAS |