Hydrophilic Magnetite Nanoparticles Enhance Anticancer Activity of Anthracyclines In Vitro
Bin Yang A , Lin Luo A , Ying Ma A B , Chunyan Chen A , Xiaoming Chen A and Changqun Cai A CA Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China.
B Avic Aviation Powerplant Research Institute, Zhuzhou, Hunan 412002, China.
C Corresponding author. Email: cai_mao3@hotmail.com
Australian Journal of Chemistry 69(11) 1247-1253 https://doi.org/10.1071/CH16074
Submitted: 7 February 2016 Accepted: 21 April 2016 Published: 14 June 2016
Abstract
A novel method for enhancing the anticancer activity of anthracyclines in vitro was proposed by using hydrophilic magnetic nanoparticles. Citric acid-coated magnetite nanoparticles Fe3O4 (nano-Fe3O4-CA) interacted with anthracyclines by electrostatic and hydrophobic forces, resulting in the formation of aggregates (nano-Fe3O4-CA-drug). The aggregate was studied by resonance light scattering and fluorescence spectroscopy. The results indicated that in comparison with anthracyclines, the nano-Fe3O4-CA-drug showed high activity towards incorporation in the DNA chain. Furthermore, the cytotoxicity of nano-Fe3O4-CA-drug was investigated by cytotoxicity experiment and cell morphology study. The results confirmed that the nano-Fe3O4-CA-drug could inhibit the growth of cells more effectively than the drug alone. In conclusion, usage of nano-Fe3O4-CA affords reduction of the dosage of anthracyclines in vitro.
References
[1] G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, L. Gianni, Pharmacol. Rev. 2004, 56, 185.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlKgtb0%3D&md5=0ee71e72baa893444f56f13f630afa34CAS | 15169927PubMed |
[2] L. Gianni, L. Norton, N. Wolmark, T. M. Suter, G. Bonadonna, G. N. Hortobagyi, J. Clin. Oncol. 2009, 27, 4798.
| Crossref | GoogleScholarGoogle Scholar | 19687331PubMed |
[3] S. K. Sahu, S. Maiti, A. Pramanik, S. K. Ghosh, P. Pramanik, Carbohydr. Polym. 2012, 87, 2593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OmurvI&md5=620720eea18e276511ef3c567efaa0b2CAS |
[4] Z. Chen, G. Liu, M. Chen, B. Xu, Y. Peng, M. Chen, M. Wu, Talanta 2009, 77, 1365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWisrvL&md5=e64a038458f4547ecb8a7b26187f9b23CAS | 19084650PubMed |
[5] F. Cui, J. Jin, X. Niu, Q. Liu, G. Zhang, Aust. J. Chem. 2014, 67, 234.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitlaqtbs%3D&md5=c27955ffa93f1ad8e4406914f662845cCAS |
[6] R. Kizek, V. Adam, J. Hrabeta, T. Eckschlager, S. Smutny, J. V. Burda, E. Frei, M. Stiborova, Pharmacol. Ther. 2012, 133, 26.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Ciur%2FL&md5=61d4b12560e3ac1d43dede54f3a4c99cCAS | 21839775PubMed |
[7] M. M. Gottesman, Cancer Res. 1993, 53, 747.
| 1:CAS:528:DyaK3sXhvVamtbc%3D&md5=cb3fe047846612a25b52509d408995b0CAS | 8094031PubMed |
[8] S. B. Kaye, Br. J. Cancer 1988, 58, 691.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7jsVKltg%3D%3D&md5=a7c504f7aaafddabe6595f1d5734bf24CAS | 3066393PubMed |
[9] R. C. Young, R. F. Ozols, C. E. Myers, N. Engl. J. Med. 1981, 305, 139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkslartLs%3D&md5=0b49df6520a7524e03ba484eb45690d9CAS | 7017406PubMed |
[10] S. Kapse-Mistry, T. Govender, R. Srivastava, M. Yergeri, Front. Pharmacol. 2014, 5, 159.
| 25071577PubMed |
[11] E. Rafiee, S. Eavani, Mater. Sci. Eng., C 2014, 39, 340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVahtLs%3D&md5=d3a8bf4907010b5b6048ca981751c759CAS |
[12] U. Gunduz, T. Keskin, G. Tansik, P. Mutlu, S. Yalcin, G. Unsoy, A. Yakar, R. Khodadust, G. Gunduz, Biomed. Pharmacother. 2014, 68, 729.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2ltrfF&md5=268662036a9c0f607b93182f58702913CAS | 25194441PubMed |
[13] E. Munnier, S. Cohen-Jonathan, K. Hervé, C. Linassier, M. Soucé, P. Dubois, I. Chourpa, J. Nanopart. Res. 2011, 13, 959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVCnurg%3D&md5=5a44046c61bed3647d017a060aface0dCAS |
[14] H. Yoo, S. K. Moon, T. Hwang, Y. S. Kim, J. H. Kim, S. W. Choi, J. H. Kim, Langmuir 2013, 29, 5962.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlekt7o%3D&md5=8433601659752cd2f9f7fb365ae0c70eCAS | 23650947PubMed |
[15] J. S. Weinstein, C. G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton, W. D. Rooney, L. L. Muldoon, E. A. Neuwelt, J. Cereb. Blood Flow Metab. 2010, 30, 15.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Wj&md5=ee5405f1dd4b44f1ce4f95dc6eeb3302CAS | 19756021PubMed |
[16] J. R. Kanwar, R. K. Kanwar, G. Mahidhara, C. H. A. Cheung, Aust. J. Chem. 2012, 65, 5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFeltrk%3D&md5=c8ef4626f7bd930c09f40fba3a4d82afCAS |
[17] W. Zhao, K. Odelius, U. Edlund, C. Zhao, A.-C. Albertsson, Biomacromolecules 2015, 16, 2522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtF2msb%2FJ&md5=6f9661171b68a2ddf0d325281784f975CAS | 26196600PubMed |
[18] H. Mao, K. Zhu, X. Liu, C. Yao, M. Kobayashi, Microporous Mesoporous Mater. 2016, 225, 216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVyntL7F&md5=74f2c95a6d24ffc1a8ef1914b02dd5e7CAS |
[19] W. Zhao, B. Cui, H. Qiu, P. Chen, Y. Wang, Mater. Lett. 2016, 169, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVSgt7c%3D&md5=04ac7e237706396bd6b0941866dc0702CAS |
[20] Y. Hu, L. Meng, L. Niu, Q. Lu, Langmuir 2013, 29, 9156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFamtLs%3D&md5=12a0dfd1047950e8cf7ab3f2e9a57894CAS | 23795597PubMed |
[21] R. M. Yang, C. P. Fu, N. N. Li, L. Wang, X. D. Xu, D. Y. Yang, J. Z. Fang, X. Q. Jiang, L. M. Zhang, Mater. Sci. Eng., C 2014, 45, 556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Knsr%2FK&md5=b0f34bbc44cb3873436f9aa890a1c2e3CAS |
[22] X. Wang, H. Liu, D. Chen, X. Meng, T. Liu, C. Fu, N. Hao, Y. Zhang, X. Wu, J. Ren, F. Tang, ACS Appl. Mater. Interfaces 2013, 5, 4966.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVKmtLk%3D&md5=4f339b7f523e543a82c67248f5a96e1dCAS | 23683167PubMed |
[23] Y. Hu, L. Meng, L. Niu, Q. Lu, ACS Appl. Mater. Interfaces 2013, 5, 4586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlCqu7k%3D&md5=8597f084fb161c975cd92144e5673424CAS | 23659588PubMed |
[24] A. P. Majewski, U. Stahlschmidt, V. Jerome, R. Freitag, A. H. Muller, H. Schmalz, Biomacromolecules 2013, 14, 3081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOgtr7M&md5=7a265f291f3feb52162bbe3839580df0CAS | 23889326PubMed |
[25] Y. Zhang, Z. Hu, H. Qin, F. Liu, K. Cheng, R. Wu, H. Zou, Anal. Chem. 2013, 85, 7038.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVChu7fM&md5=7e16280e75c5bd5efdb52f385f534a25CAS | 23815738PubMed |
[26] S. Nigam, K. C. Barick, D. Bahadur, J. Magn. Magn. Mater. 2011, 323, 237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12gu7nN&md5=a0dc2746c843ad9554a3b197d9fbca36CAS |
[27] G. A. Neyhart, N. Grover, S. R. Smith, W. A. Kalsbeck, T. A. Fairley, M. Cory, H. H. Thorp, J. Am. Chem. Soc. 1993, 115, 4423.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVCgt7k%3D&md5=1e22b545ef7ea45a13d4b2a7cf6d610aCAS |
[28] L. Tian, B. A. Chen, J. Cheng, Q. L. Guo, OncoTargets Ther. 2015, 8, 2285.
[29] G. Xia, B. Chen, J. Ding, C. Gao, H. Lu, Z. Shao, F. Gao, X. Wang, Int. J. Nanomed. 2011, 6, 1921.
| 1:CAS:528:DC%2BC3MXhtleis7fM&md5=9702015a81284b5c12390686a924271bCAS |
[30] W. Zhang, L. Qiao, X. Wang, R. Senthilkumar, F. Wang, B. Chen, Int. J. Nanomed. 2015, 10, 3275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpvFymu7k%3D&md5=536b293406e2e95e82f27cfc98287e88CAS |