Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Loading of a Phenanthroline-Based Platinum(ii) Complex onto the Surface of a Carbon Nanotube via π–π Stacking

Stephanie A. Houston A , Natarajan S. Venkataramanan B , Ambigapathy Suvitha B and Nial J. Wheate C D
+ Author Affiliations
- Author Affiliations

A Faculty of Life Sciences, University of Manchester, Core Technology Facility, Manchester, M13 9NT, United Kingdom.

B Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401, India.

C Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.

D Corresponding author. Email: nial.wheate@sydney.edu.au

Australian Journal of Chemistry 69(10) 1124-1129 https://doi.org/10.1071/CH16067
Submitted: 5 February 2016  Accepted: 21 March 2016   Published: 29 April 2016

Abstract

Stacking of the metal complex [(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)platinum(ii)]2+ (56MESS) onto the surface of two different fullerenes, a carbon nanotube (CNT), and a C60-buckyball was examined. The metal complex forms a supramolecular complex with multi-walled CNTs but not with buckyballs. Binding of 56MESS to the CNTs is highly efficient (90 %) but can be further stabilized by the addition of the surfactant, pluronic F-127, which resulted in a loading efficiency of 95 %. Molecular modelling shows that binding of 56MESS to the CNT is supported by the large surface area of the fullerene, whereas the more pronounced curvature and lack of a flat surface on the buckyball affects the ability of 56MESS to form bonds to its surface. The loading of 56MESS onto the CNT is via π–π stacking from the metal complex phenanthroline ligand and C–H···π bonding from the diaminocyclohexane ligand. 56MESS has 13 critical bonding points with the CNT, eight of which are π–π stacking bonds, but the metal complex forms only seven bonds with the buckyball. In addition, the loading of 56MESS onto the CNT results in a charge transfer of –0.111 eV; however, charge transfer is almost negligible for binding to the buckyball.


References

[1]  R. Sen, B. C. Satishkumar, G. Raina, C. N. R. Rao, Fullerene Sci. Technol. 1997, 5, 489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt1Sjur8%3D&md5=789c2f032375c0d45a153f9fa5df9d1cCAS |

[2]  A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Khtrg%3D&md5=042bcba74a201c736bf9dc4155528373CAS | 17330084PubMed |

[3]  D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106, 1105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs12lt74%3D&md5=de545fd407958c86b1f8d3213399e878CAS | 16522018PubMed |

[4]  S. Abdalla, F. Al-Marzouki, A. A. Al-Ghamdi, A. Abdel-Daiem, Nanoscale Res. Lett. 2015, 10, 358.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC283jt1Gjtw%3D%3D&md5=cd7d0d9ef30ecbb602947f35846f93afCAS | 26377211PubMed |

[5]  K. Ajima, A. Maigne, M. Yudasaka, S. Iijima, J. Phys. Chem. B 2006, 110, 19097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVylt7w%3D&md5=9ffbbbcaa9d761bce77fa1471d8c07dbCAS | 17004753PubMed |

[6]  K. Ajima, T. Murakami, Y. Mizoguchi, K. Tsuchida, T. Ichihashi, S. Iijima, M. Yudasaka, ACS Nano 2008, 2, 2057.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2ju7jE&md5=8ceda1aaa79d6a4ba262569ed2a6feb3CAS | 19206452PubMed |

[7]  S. Dhar, W. L. Daniel, D. A. Giljohann, C. A. Mirkin, S. J. Lippard, J. Am. Chem. Soc. 2009, 131, 14652.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOiurrM&md5=02a6ef43e66a6e788e1ad2ecf119aa6cCAS | 19778015PubMed |

[8]  S. Dhar, Z. Liu, J. Thomale, H. Dai, S. J. Lippard, J. Am. Chem. Soc. 2008, 130, 11467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVGjuro%3D&md5=c3deed6e2ad37c6c231ffdfa2da9685eCAS | 18661990PubMed |

[9]  M. J. Pisani, N. J. Wheate, F. R. Keene, J. R. Aldrich-Wright, J. G. Collins, J. Inorg. Biochem. 2009, 103, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVOlu7w%3D&md5=5e7e00fde7c1b2e68312a571dd56ae58CAS | 19121543PubMed |

[10]  A. M. Krause-Heuer, N. J. Wheate, M. J. Tilby, D. Pearson, C. J. Ottley, J. R. Aldrich-Wright, Inorg. Chem. 2008, 47, 6880.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFKjs7c%3D&md5=4e8b831cc17dffb9969679de9177d90bCAS | 18597414PubMed |

[11]  S. Kemp, N. J. Wheate, S. Wang, J. G. Collins, S. F. Ralph, A. I. Day, V. J. Higgins, J. R. Aldrich-Wright, J. Biol. Inorg. Chem. 2007, 12, 969.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVagtL0%3D&md5=cda005ccd5f2f749c3e00338b74715adCAS | 17653578PubMed |

[12]  A. M. Krause-Heuer, N. J. Wheate, W. S. Price, J. Aldrich-Wright, Chem. Commun. 2009, 1210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVChsLY%3D&md5=127c4c9ea17c2c420900880e662c44b9CAS |

[13]  C. R. Brodie, P. Turner, N. J. Wheate, J. R. Aldrich-Wright, Acta Crystallogr. 2006, E62, m3137.

[14]  N. J. Wheate, R. I. Taleb, A. M. Krause-Heuer, R. L. Cook, S. Wang, V. J. Higgins, J. R. Aldrich-Wright, Dalton Trans. 2007, 5055.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1eht73P&md5=035f64099ac9fa782a4bdca86d5dc51aCAS | 17992290PubMed |

[15]  M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2013 (Gaussian Inc.: Wallingford, CT).

[16]  S. Ehrlich, J. Moellmann, S. Grimme, Acc. Chem. Res. 2013, 46, 916.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xoslans7w%3D&md5=212004634deb7e86ecf3db10b65b8888CAS | 22702344PubMed |

[17]  W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1SjtLk%3D&md5=128b0e740831bba8712ffa26ee342da1CAS |

[18]  P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1SjtLY%3D&md5=e8127a43d49d35c003f46d22eb98bb56CAS |

[19]  A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOitbw%3D&md5=395c47d723905e2ee2b85abbf63ea776CAS |

[20]  T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
         | Crossref | GoogleScholarGoogle Scholar | 22162017PubMed |

[21]  H. Ali-Boucetta, K. T. Al-Jamal, D. McCarthy, M. Prato, A. Bianco, K. Kostarelos, Chem. Commun. 2008, 459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFSnsw%3D%3D&md5=11615c62678cbc21ff55f882cfd1dc0cCAS |

[22]  R. C. Haddon, Philos. Trans. R. Soc., A 1993, 343, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlslakt70%3D&md5=76461c55edfa14aef01dfd3627ad2f3eCAS |

[23]  N. S. Venkataramanan, S. Ambigapathy, H. Mizuseki, Y. Kawazoe, J. Phys. Chem. B 2012, 116, 14029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSmtrvF&md5=e293bfab067e8a71555c926bb622d73fCAS | 23167965PubMed |