Development of Lignocellulosic Biorefinery Technologies: Recent Advances and Current Challenges
Antonella Amore A C D , Peter N. Ciesielski A C , Chien-Yuan Lin A C , Davinia Salvachúa B C and Violeta Sànchez i Nogué B CA Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
B National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
C All authors contributed equally to this work.
D Corresponding author. Email: antonella.amore@nrel.gov
Antonella Amore received her bachelor's degree (2007) and Master's degree (2009) from the University of Naples ‘Federico II’ (Italy), where she also received her Ph.D. in molecular and industrial biotechnology (2013). She worked as a post-doctoral researcher at the same university from 2013 to 2015. She is currently a post-doctoral researcher in the Biosciences Center at the National Renewable Energy Laboratory (since June 2015). Her research is focussed on the optimization of enzymes for bioethanol production. |
Peter Ciesielski received a B.S. in chemical and biological engineering from Colorado State University in 2006. He then accepted an NSF IGERT Fellowship at Vanderbilt University where he received a Ph.D. in interdisciplinary materials science in 2010. He is currently a research scientist in the Biosciences Center at the National Renewable Energy Laboratory. Peter has a broad interdisciplinary background and training that encompasses many aspects of bioenergy and biomaterials science, including advanced imaging techniques, computational image analysis, modeling and simulation, and electrochemical catalysis. At NREL, Peter applies these tools to evaluate the impacts of thermochemical and biochemical treatments of biomass that facilitate its transformation into renewable fuels, chemicals, and nanomaterials. |
Chien-Yuan Lin received his B.S. in life science in 2007 and his M.S. in microbiology and biochemistry in 2009 from National Taiwan University. He received his Ph.D. in forestry from North Carolina State University in 2015. His thesis work was focussed on genetics and secondary metabolism in plants, with particular interest in lignin biosynthesis and plant cell walls. He joined the National Renewable Energy Laboratory as a post-doctoral researcher in June 2015. He is interested in feedstock improvement for producing biofuel and other valuable products. |
Davinia Salvachúa is a staff scientist at the National Renewable Energy Laboratory (NREL) in Golden, Colorado (USA). Her research is focussed on biological lignin depolymerization and upgrading of lignin and sugar to chemicals and fuel precursors through fermentation development with diverse microorganisms. She received her bachelor's degree in biology from Alcalá de Henares University in 2007 and her Ph.D. in biology from the Department of Microbiology at the Complutense University of Madrid in 2013. She has worked as a post-doctoral fellow in the Center of Biological Research (Madrid, Spain) and NREL. |
Violeta Sànchez i Nogué received a B.S. in chemical engineering from the Universitat Autònoma de Barcelona in 2007 and a Ph.D. in engineering from the Division of Applied Microbiology at Lund University in 2013. Her thesis work was focussed on the industrial challenges in the use of Saccharomyces cerevisiae for ethanolic fermentation of lignocellulosic biomass. After she defended her thesis, she worked as a research scientist at C5 Ligno Technologies in Lund AB, developing recombinant industrial yeast strains with lignocellulose bioconversion properties. She joined the National Renewable Energy Laboratory as a post-doctoral researcher in July 2015. Her interests lie in the production of chemicals and fuels from biomass feedstocks involving biotechnological steps. |
Australian Journal of Chemistry 69(11) 1201-1218 https://doi.org/10.1071/CH16022
Submitted: 16 January 2016 Accepted: 24 March 2016 Published: 6 June 2016
Abstract
Recent developments of the biorefinery concept are described within this review, which focuses on the efforts required to make the lignocellulosic biorefinery a sustainable and economically viable reality. Despite the major research and development endeavours directed towards this goal over the past several decades, the integrated production of biofuel and other bio-based products still needs to be optimized from both technical and economical perspectives. This review will highlight recent progress towards the optimization of the major biorefinery processes, including biomass pretreatment and fractionation, saccharification of sugars, and conversion of sugars and lignin into fuels and chemical precursors. In addition, advances in genetic modification of biomass structure and composition for the purpose of enhancing the efficacy of conversion processes, which is emerging as a powerful tool for tailoring biomass fated for the biorefinery, will be overviewed. The continual improvement of these processes and their integration in the format of a modern biorefinery is paving the way for a sustainable bio-economy which will displace large portions of petroleum-derived fuels and chemicals with renewable substitutes.
References
[1] IEA Bioenergy Task 42 Biorefinery. Available at www.iea-bioenergy.task42-biorefineries.com (accessed 1 May 2016).[2] E. de Jong, G. Jungmeier, in Industrial Biorefineries & White Biotechnology (Ed. A. Pandey, R. Höfer, M. Taherzadeh, M. Nampoothiri, C. Larroche) 2015, Ch. 1, pp. 3–33 (Elsevier: Amsterdam).
[3] J. H. Clark, R. Luque, A. S. Matharu, Annu. Rev. Chem. Biomol. Eng. 2012, 3, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GmtbbL&md5=6c1c2f96fee8392afa6438fab483a250CAS | 22468603PubMed |
[4] H. W. Doelle, E. J. DaSilva, Biotechnol. 2012, 7, 1.
[5] A. R. Morais, R. Bogel-Lukasik, Sustain Chem. Processes 2013, 1, 18.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. Clark, F. Deswarte, in Introduction to Chemicals from Biomass (Eds J. H. Clark, F. E. I. Deswarte) 2008, Ch. 1, pp. 1–20 (John Wiley & Sons, Ltd: Chichester).
[7] P. N. Ciesielski, M. F. Crowley, M. R. Nimlos, A. W. Sanders, G. M. Wiggins, D. Robichaud, B. S. Donohoe, T. D. Foust, Energy Fuels 2015, 29, 242.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVGmsLfO&md5=230bceccee65bb38438bf12570017273CAS |
[8] M. E. Himmel, S.-Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, T. D. Foust, Science 2007, 315, 804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVShsrk%3D&md5=733d38bc0dae3294c438c040777c06e3CAS | 17289988PubMed |
[9] N. C. Carpita, D. M. Gibeaut, Plant J. 1993, 3, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitV2gtLk%3D&md5=cd6a971d59c533198a153b26897b8047CAS | 8401598PubMed |
[10] C. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osborne, A. Paredez, S. Persson, T. Raab, S. Vorwerk, H. Youngs, Science 2004, 306, 2206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSjtrvO&md5=75a49374a92842f5557dd8a9b3f3d92cCAS | 15618507PubMed |
[11] R. E. Booker, J. Sell, Holz Roh- Werkst. 1998, 56, 1.
| Crossref | GoogleScholarGoogle Scholar |
[12] P. Xu, L. A. Donaldson, Z. R. Gergely, L. A. Staehelin, Wood Sci. Technol. 2007, 41, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFKgtb8%3D&md5=3db4a8d8f1023cd51b08bb92830b4aabCAS |
[13] P. N. Ciesielski, J. F. Matthews, M. P. Tucker, G. T. Beckham, M. F. Crowley, M. E. Himmel, B. S. Donohoe, ACS Nano 2013, 7, 8011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlKktLzP&md5=b31472d149484a0198a8fecf3765e3bfCAS | 23988022PubMed |
[14] A. N. Fernandes, L. H. Thomas, C. M. Altaner, P. Callow, V. T. Forsyth, D. C. Apperley, C. J. Kennedy, M. C. Jarvis, Proc. Natl. Acad. Sci. USA 2011, 108, E1195.
| Crossref | GoogleScholarGoogle Scholar | 22065760PubMed |
[15] H. Inouye, Y. Zhang, L. Yang, N. Venugopalan, R. F. Fischetti, S. C. Gleber, S. Vogt, W. Fowle, B. Makowski, M. Tucker, P. Ciesielski, B. Donohoe, J. Matthews, M. E. Himmel, L. Makowski, Sci. Rep. 2014, 4, 3756.
| Crossref | GoogleScholarGoogle Scholar | 24441444PubMed |
[16] S. Y. Ding, Y. S. Liu, Y. N. Zeng, M. E. Himmel, J. O. Baker, E. A. Bayer, Science 2012, 338, 1055.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12itrjK&md5=1c2d6253ba9bce3854e6069aa70ea4e9CAS | 23180856PubMed |
[17] R. Van Acker, R. Vanholme, V. Storme, J. C. Mortimer, P. Dupree, W. Boerjan, Biotechnol. Biofuels 2013, 6, 46.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFyiurc%3D&md5=61a1c3669bf6fcf87f32af032d8952bbCAS | 23622268PubMed |
[18] S. G. Wi, I. S. Choi, K. H. Kim, H. M. Kim, H. J. Bae, Biotechnol. Biofuels 2013, 6, 166.
| 24286244PubMed |
[19] J. Gui, J. Shen, L. Li, Plant Physiol. 2011, 157, 574.
| 1:CAS:528:DC%2BC3MXhtlahu7nE&md5=a066463a971cb649f076be917c5a1e67CAS | 21807887PubMed |
[20] Y. Huang, X. Wei, S. Zhou, M. Liu, Y. Tu, A. Li, P. Chen, Y. Wang, X. Zhang, H. Tai, L. Peng, T. Xia, Bioresour. Technol. 2015, 181, 224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVagu7w%3D&md5=7f459d4a5cadfab172ac1f962b439af9CAS | 25656866PubMed |
[21] S. Kang, L. Xiao, L. Meng, X. Zhang, R. Sun, Int. J. Mol. Sci. 2012, 13, 15209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVequrrP&md5=28728886ba69c7233851c57a20f29240CAS | 23203120PubMed |
[22] S. P. Chundawat, B. Venkatesh, B. E. Dale, Biotechnol. Bioeng. 2007, 96, 219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFSisg%3D%3D&md5=d91b5860814ecd83bf111d783a2c50f3CAS | 16903002PubMed |
[23] R. Santiago, J. Barros-Rios, R. A. Malvar, Int. J. Mol. Sci. 2013, 14, 6960.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVaktbk%3D&md5=b454bd73a34546a84dae0dfc213380c0CAS | 23535334PubMed |
[24] A. Wagner, L. Donaldson, H. Kim, L. Phillips, H. Flint, D. Steward, K. Torr, G. Koch, U. Schmitt, J. Ralph, Plant Physiol. 2009, 149, 370.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Wqt7s%3D&md5=bb23535fc77354c3bc08acac61d7912bCAS | 18971431PubMed |
[25] F. Huang, P. M. Singh, A. J. Ragauskas, J. Agric. Food Chem. 2011, 59, 12910.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGqsrfI&md5=943f3737003a0238eac62d06c9f6350dCAS | 22141335PubMed |
[26] J. P. Thornber, D. H. Northcote, Biochem. J. 1961, 81, 449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xis1Ogsw%3D%3D&md5=bc2a516eee0ed7140a866c4069737efbCAS | 13921025PubMed |
[27] O. Skyba, C. J. Douglas, S. D. Mansfield, Appl. Environ. Microbiol. 2013, 79, 2560.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVKls7o%3D&md5=589253b42433077487610e1240d361faCAS | 23396333PubMed |
[28] W. J. Hu, S. A. Harding, J. Lung, J. L. Popko, J. Ralph, D. D. Stokke, C. J. Tsai, V. L. Chiang, Nat. Biotechnol. 1999, 17, 808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtFahsrs%3D&md5=d643a9ba9c697ed4d3668a07384a3e6fCAS | 10429249PubMed |
[29] S. Kaakinen, K. Kostiainen, F. Ek, P. Saranpää, M. E. Kubiske, J. Sober, D. F. Karnosky, E. Vapaavuori, Glob. Change Biol. 2004, 10, 1513.
| Crossref | GoogleScholarGoogle Scholar |
[30] S. Lu, Q. Li, H. Wei, M. J. Chang, S. Tunlaya-Anukit, H. Kim, J. Liu, J. Song, Y. H. Sun, L. Yuan, T. F. Yeh, I. Peszlen, J. Ralph, R. R. Sederoff, V. L. Chiang, Proc. Natl. Acad. Sci. USA 2013, 110, 10848.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFejs7nE&md5=ed7c715f535fdfc8fb65ba1d83d8165cCAS | 23754401PubMed |
[31] C. Fu, J. R. Mielenz, X. Xiao, Y. Ge, C. Y. Hamilton, M. Rodriguez, F. Chen, M. Foston, A. Ragauskas, J. Bouton, R. A. Dixon, Z.-Y. Wang, Proc. Natl. Acad. Sci. USA 2011, 108, 3803.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFOqsb8%3D&md5=00b9ceeb2091582a4bd07dce4a69c6eeCAS | 21321194PubMed |
[32] E. Novaes, M. Kirst, V. Chiang, H. Winter-Sederoff, R. Sederoff, Plant Physiol. 2010, 154, 555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCkt7rN&md5=abe85330b2363aa92a9ba4b7d436e8edCAS | 20921184PubMed |
[33] S. C. Mueller, R. M. Brown, J. Cell Biol. 1980, 84, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c3gsVCgsw%3D%3D&md5=f14c1c03fc8ec4db0cbbfc543ec6f2d3CAS | 7189755PubMed |
[34] T. A. Richmond, C. R. Somerville, Plant Physiol. 2000, 124, 495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsF2rsrY%3D&md5=014469303bb1b0121c917daf8a395a25CAS | 11027699PubMed |
[35] N. G. Taylor, R. M. Howells, A. K. Huttly, K. Vickers, S. R. Turner, Proc. Natl. Acad. Sci. USA 2003, 100, 1450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtF2nsrc%3D&md5=523c137668338971242c3b26a34c7b6eCAS | 12538856PubMed |
[36] T. Desprez, M. Juraniec, E. F. Crowell, H. Jouy, Z. Pochylova, F. Parcy, H. Hofte, M. Gonneau, S. Vernhettes, Proc. Natl. Acad. Sci. USA 2007, 104, 15572.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFaju7fM&md5=c6e2684eaa2e08fe5a95d08f747f2fb0CAS | 17878303PubMed |
[37] A. Endler, S. Persson, Mol. Plant 2011, 4, 199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFehu7s%3D&md5=a86a8e51ed5a3649b635a12e70d95fc4CAS | 21307367PubMed |
[38] L. Wang, K. Guo, Y. Li, Y. Tu, H. Hu, B. Wang, X. Cui, L. Peng, BMC Plant Biol. 2010, 10, 1.
| Crossref | GoogleScholarGoogle Scholar |
[39] L. Appenzeller, M. Doblin, R. Barreiro, H. Wang, X. Niu, K. Kollipara, L. Carrigan, D. Tomes, M. Chapman, K. Dhugga, Cellulose 2004, 11, 287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yktg%3D%3D&md5=37fd204d4c2d39873f5c00e626be0507CAS |
[40] S. Palle, C. Seeve, A. Eckert, W. P. Cumbie, B. Goldfarb, C. Loopstra, Tree Genet. Genomes 2011, 7, 193.
| Crossref | GoogleScholarGoogle Scholar |
[41] M. Kumar, S. Thammannagowda, V. Bulone, V. Chiang, K.-H. Han, C. P. Joshi, S. D. Mansfield, E. Mellerowicz, B. Sundberg, T. Teeri, B. E. Ellis, Trends Plant Sci. 2009, 14, 248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Oqt7o%3D&md5=ebdbbf53f58e67a83734be8dcbc9538aCAS | 19375973PubMed |
[42] S. Suzuki, L. Li, Y. H. Sun, V. L. Chiang, Plant Physiol. 2006, 142, 1233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eju77E&md5=00f5a8dcb2ed6d7ad4875b8a048ede44CAS | 16950861PubMed |
[43] C. P. Joshi, S. Bhandari, P. Ranjan, U. C. Kalluri, X. Liang, T. Fujino, A. Samuga, New Phytol. 2004, 164, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovF2rsLk%3D&md5=7663385af463eaf457d71cdb95644a15CAS |
[44] X. Liu, Q. Wang, P. Chen, F. Song, M. Guan, L. Jin, Y. Wang, C. Yang, Int. J. Mol. Sci. 2012, 13, 12195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSitb7O&md5=dcd8cf1c1cad64bb7670e5fa183f0073CAS | 23202892PubMed |
[45] X. Li, H. X. Wu, S. K. Dillon, S. G. Southerton, BMC Genomics 2009, 10, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVyhtLw%3D&md5=8c662409ff63b02c1db544faf1c79773CAS |
[46] X. Li, H. X. Wu, S. G. Southerton, BMC Genomics 2011, 12, 1.
| Crossref | GoogleScholarGoogle Scholar |
[47] C. J. Nairn, D. M. Lennon, A. Wood-Jones, A. V. Nairn, J. F. Dean, Tree Physiol. 2008, 28, 1099.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptFyrtbg%3D&md5=21c62377828c879ea5ca7e04ad9f14efCAS | 18450574PubMed |
[48] A. Li, T. Xia, W. Xu, T. Chen, X. Li, J. Fan, R. Wang, S. Feng, Y. Wang, B. Wang, L. Peng, Planta 2013, 237, 1585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVent7k%3D&md5=30f0839902ef43b450717326895f4735CAS | 23508664PubMed |
[49] H. V. Scheller, P. Ulvskov, Annu. Rev. Plant Biol. 2010, 61, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSjsLw%3D&md5=6fd9c2bb32ec05b47bdab3e685340a55CAS | 20192742PubMed |
[50] R. R. Selvendran, M. A. O’Neill, Methods Biochem. Anal. 1987, 32, 25.
| 1:CAS:528:DyaL1cXjsVCgsg%3D%3D&md5=0efe919144296aa0fa5b54921beccf10CAS | 3574138PubMed |
[51] N. D. Yilmaz, in Lignocellulosic Polymer Composites (Ed. V. K. Thakur) 2014, Ch. 11, pp. 231–270 (John Wiley & Sons, Inc.: Hoboken, NJ).
[52] F. Gerhardt, Plant Physiol. 1929, 4, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zhtFWmug%3D%3D&md5=45aee5349b60513b543441433bf23d22CAS | 16652622PubMed |
[53] See Ch. 7, pp. 51–70 in: E. Sjöström, Wood Chemistry: Fundamentals and Applications 1981 (Academic Press: New York, NY).
[54] T. E. Timell, Wood Sci. Technol. 1967, 1, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXktFWhtg%3D%3D&md5=717e206c36c5ed603fd43d5e3be57b9aCAS |
[55] M. Pauly, S. Gille, L. Liu, N. Mansoori, A. de Souza, A. Schultink, G. Xiong, Planta 2013, 238, 627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Shs7nN&md5=91ca09610e89894b8546502aac3cec4eCAS | 23801299PubMed |
[56] C. Voiniciuc, M. H.-W. Schmidt, A. Berger, B. Yang, B. Ebert, H. V. Scheller, H. M. North, B. Usadel, M. Günl, Plant Physiol. 2015, 169, 403.
| Crossref | GoogleScholarGoogle Scholar | 26220953PubMed |
[57] T. Higuchi, in Biochemistry and Molecular Biology of Wood (Ed. T. E. Timell) 1997, Ch. 1, pp. 1–42 (Springer: Berlin).
[58] T. A. Richmond, C. R. Somerville, Plant Mol. Biol. 2001, 47, 131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslGmsbw%3D&md5=70cabb81823374705b0e99c6e3486d99CAS | 11554468PubMed |
[59] K. Keegstra, J. Walton, Science 2006, 311, 1872.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Gnur4%3D&md5=f369a6db382277b7d2365ec0351a2605CAS | 16574854PubMed |
[60] G. B. Fincher, Plant Physiol. 2009, 149, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Wqs7Y%3D&md5=8819162ccf6e93243624a9a6b0b3523eCAS | 19126692PubMed |
[61] A. H. Liepman, C. G. Wilkerson, K. Keegstra, Proc. Natl. Acad. Sci. USA 2005, 102, 2221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFGqsLg%3D&md5=d4fa7474c097736308d2f6793d3e756bCAS | 15647349PubMed |
[62] J. C. Cocuron, O. Lerouxel, G. Drakakaki, A. P. Alonso, A. H. Liepman, K. Keegstra, N. Raikhel, C. G. Wilkerson, Proc. Natl. Acad. Sci. USA 2007, 104, 8550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVCgu78%3D&md5=a8d86800dc778d525bed616aaa5f67b1CAS | 17488821PubMed |
[63] M. Li, G. Xiong, R. Li, J. Cui, D. Tang, B. Zhang, M. Pauly, Z. Cheng, Y. Zhou, Plant J. 2009, 60, 1055.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVCntw%3D%3D&md5=1b17a96a5d1302fa13f2d28945993dacCAS | 19765235PubMed |
[64] R. A. Burton, S. M. Wilson, M. Hrmova, A. J. Harvey, N. J. Shirley, A. Medhurst, B. A. Stone, E. J. Newbigin, A. Bacic, G. B. Fincher, Science 2006, 311, 1940.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFSmt7k%3D&md5=4ffc48bf71cb4ea6c42cdc9f99b6e369CAS | 16574868PubMed |
[65] M. S. Doblin, F. A. Pettolino, S. M. Wilson, R. Campbell, R. A. Burton, G. B. Fincher, E. Newbigin, A. Bacic, Proc. Natl. Acad. Sci. USA 2009, 106, 5996.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFehtr4%3D&md5=07fa37ea35dc3cd542d799ebf3b99ad1CAS | 19321749PubMed |
[66] Y. Z. Lai, K. V. Sarkanen, in Lignins: Occurrence, Formation, Structure and Reactions (Eds K. V. Sarkanen, C. H. Ludwig) 1971, pp. 165–240 (Wiley-Interscience: New York, NY).
[67] J. H. Grabber, J. Ralph, C. Lapierre, Y. Barriere, C. R. Biol. 2004, 327, 455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks12qu7k%3D&md5=1a56ae257f03005359075abebdb4e1e0CAS | 15255476PubMed |
[68] S. Mathew, T. E. Abraham, Crit. Rev. Biotechnol. 2004, 24, 59.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslaktrw%3D&md5=afe96f2ce1af23f453489760c84780c5CAS | 15493526PubMed |
[69] M. Christiernin, A. B. Ohlsson, T. Berglund, G. Henriksson, Plant Physiol. Biochem. 2005, 43, 777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWhtrrN&md5=0b1567795ce25fd072bc6180bbdbb1aeCAS | 16198589PubMed |
[70] Y. Barrière, C. Riboulet, V. Méchin, S. Maltese, M. Pichon, A. Cardinal, C. Lapierre, T. Lubberstedt, J.-P. Martinant, G3 - Genes Genom. Genet. 2007, 1, 133.
[71] R. Vanholme, B. Demedts, K. Morreel, J. Ralph, W. Boerjan, Plant Physiol. 2010, 153, 895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFejs7o%3D&md5=cdc812f62097f6852101175a7c367c6dCAS | 20472751PubMed |
[72] P. Whiting, D. Goring, Wood Sci. Technol. 1982, 16, 261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsFOqtw%3D%3D&md5=e2c7494d4a562e992c19d2bb231a0398CAS |
[73] U. P. Agarwal, R. H. Atalla, Planta 1986, 169, 325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslajuw%3D%3D&md5=db68bf224d52f6566e4d9e8ec91b8598CAS | 24232643PubMed |
[74] C. Lapierre, B. Pollet, J. J. MacKay, R. R. Sederoff, J. Agric. Food Chem. 2000, 48, 2326.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlGrurY%3D&md5=be37df713e55720d7c957fdc1bcf7744CAS | 10888545PubMed |
[75] M. Chabannes, K. Ruel, A. Yoshinaga, B. Chabbert, A. Jauneau, J.-P. Joseleau, A.-M. Boudet, Plant J. 2001, 28, 271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1KjtbY%3D&md5=86695e69418d4d7e6b5e9db2efd39328CAS | 11722770PubMed |
[76] U. N. Dwivedi, W. H. Campbell, J. Yu, R. S. Datla, R. C. Bugos, V. L. Chiang, G. K. Podila, Plant Mol. Biol. 1994, 26, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVKnt7Y%3D&md5=77109b45fca10cd49fff40f111478c3cCAS | 7948906PubMed |
[77] W. Ni, N. Paiva, R. Dixon, Transgenic Res. 1994, 3, 120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVCitbo%3D&md5=469b3813ea734b3338b131abe2d8e481CAS |
[78] R. Atanassova, N. Favet, F. Martz, B. Chabbert, M.-T. Tollier, B. Monties, B. Fritig, M. Legrand, Plant J. 1995, 8, 465.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslSnur0%3D&md5=4235d4b65b2d2759ce34c92cbe53c6ecCAS |
[79] J. Van Doorsselaere, M. Baucher, E. Chognot, B. Chabbert, M.-T. Tollier, M. Petit-Conil, J.-C. Leplé, G. Pilate, D. Cornu, B. Monties, M. Van Montagu, D. Inzé, W. Boerjan, L. Jouanin, Plant J. 1995, 8, 855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XosFahsw%3D%3D&md5=fd6e50ec99b8501d8c062a712a212f6cCAS |
[80] C. Lapierre, B. Pollet, M. Petit-Conil, G. Toval, J. Romero, G. Pilate, J. C. Leple, W. Boerjan, V. V. Ferret, V. De Nadai, L. Jouanin, Plant Physiol. 1999, 119, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1Glug%3D%3D&md5=bf2e18caee740326fc1664677e85bf82CAS | 9880356PubMed |
[81] H. Meyermans, K. Morreel, C. Lapierre, B. Pollet, A. De Bruyn, R. Busson, P. Herdewijn, B. Devreese, J. Van Beeumen, J. M. Marita, J. Ralph, C. Chen, B. Burggraeve, M. Van Montagu, E. Messens, W. Boerjan, J. Biol. Chem. 2000, 275, 36899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslWlsL8%3D&md5=ab8684547b89a87533b83511e4e39dcaCAS | 10934215PubMed |
[82] D. Guo, F. Chen, K. Inoue, J. W. Blount, R. A. Dixon, Plant Cell 2001, 13, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslCrtro%3D&md5=641a0a236fcee4ca82b49cf7a7507176CAS | 11158530PubMed |
[83] K. P. Vogel, H. J. G. Jung, Crit. Rev. Plant Sci. 2001, 20, 15.
| Crossref | GoogleScholarGoogle Scholar |
[84] A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 2006, 311, 484.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVylsw%3D%3D&md5=4e0fbf1dc78b86b72701f6b0c6203457CAS | 16439654PubMed |
[85] V. L. Chiang, Nat. Biotechnol. 2002, 20, 557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFOitbY%3D&md5=afb2fa25dc98750a4b19b1be7662507bCAS | 12042854PubMed |
[86] F. Chen, R. A. Dixon, Nat. Biotechnol. 2007, 25, 759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFarurY%3D&md5=db1a2d38d274a82902d7a8e778caceedCAS | 17572667PubMed |
[87] E. M. Rubin, Nature 2008, 454, 841.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVaju74%3D&md5=e9af114a34b21eede07468e713f39d28CAS | 18704079PubMed |
[88] M. H. Studer, J. D. DeMartini, M. F. Davis, R. W. Sykes, B. Davison, M. Keller, G. A. Tuskan, C. E. Wyman, Proc. Natl. Acad. Sci. USA 2011, 108, 6300.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVyjsLc%3D&md5=e6daafb6aeb60ac2d4d716d7fc391123CAS | 21444820PubMed |
[89] R. Torget, P. Walter, M. Himmel, K. Grohmann, Appl. Biochem. Biotechnol. 1991, 28, 75.
| Crossref | GoogleScholarGoogle Scholar |
[90] M. P. Tucker, K. H. Kim, M. M. Newman, Q. A. Nguyen, Appl. Biochem. Biotechnol. 2003, 105, 165.
| Crossref | GoogleScholarGoogle Scholar | 12721483PubMed |
[91] H. Alizadeh, F. Teymouri, T. I. Gilbert, B. E. Dale, Appl. Biochem. Biotechnol. 2005, 124, 1133.
| Crossref | GoogleScholarGoogle Scholar |
[92] A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna, M. Keller, Science 2014, 344, 1246843.
| Crossref | GoogleScholarGoogle Scholar | 24833396PubMed |
[93] R. Katahira, A. Mittal, K. McKinney, P. N. Ciesielski, B. S. Donohoe, S. K. Black, D. K. Johnson, M. J. Biddy, G. T. Beckham, ACS Sustainable Chem. Eng. 2014, 2, 1364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVensrw%3D&md5=dd0860677ab3f8fdfc4ce0b0e08241b9CAS |
[94] E. M. Karp, B. S. Donohoe, M. H. O’Brien, P. N. Ciesielski, A. Mittal, M. J. Biddy, G. T. Beckham, ACS Sustainable Chem. Eng. 2014, 2, 1481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVektbo%3D&md5=ff789f3b7732ce64a23b33fac6ee4589CAS |
[95] L. Lo Leggio, T. J. Simmons, J.-C. N. Poulsen, K. E. Frandsen, G. R. Hemsworth, M. A. Stringer, P. von Freiesleben, M. Tovborg, K. S. Johansen, L. De Maria, Nat. Commun. 2015, 6, 5961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtF2lu7nP&md5=01dcf4d192fa3b6de64bb31cd098d3f0CAS | 25608804PubMed |
[96] M. Himmel, Q. Xu, Y. Luo, S. Ding, R. Lamed, E. Bayer, Biofuels 2010, 1, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVOitb0%3D&md5=81336454bf9c81b1d6fbe2c1f56b638bCAS |
[97] C. M. Payne, B. C. Knott, H. B. Mayes, H. Hansson, M. E. Himmel, M. Sandgren, J. Ståhlberg, G. T. Beckham, Chem. Rev. 2015, 115, 1308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsF2mur4%3D&md5=386dc1d35fbaad101290634e5de90015CAS | 25629559PubMed |
[98] C. M. Payne, M. G. Resch, L. Chen, M. F. Crowley, M. E. Himmel, L. E. Taylor, M. Sandgren, J. Ståhlberg, I. Stals, Z. Tan, Proc. Natl. Acad. Sci. USA 2013, 110, 14646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVKksL7J&md5=575055b0f817bb072565ccec0b3c942bCAS | 23959893PubMed |
[99] L. Chen, M. R. Drake, M. G. Resch, E. R. Greene, M. E. Himmel, P. K. Chaffey, G. T. Beckham, Z. Tan, Proc. Natl. Acad. Sci. USA 2014, 111, 7612.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsl2ntLo%3D&md5=f8a64d9ea59dca80c5fb69339452a32bCAS | 24821760PubMed |
[100] R. M. Happs, X. Guan, M. G. Resch, M. F. Davis, G. T. Beckham, Z. Tan, M. F. Crowley, FEBS J. 2015, 282, 4341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFajurnJ&md5=951d699c297203ba422aea22e41b25d7CAS | 26307003PubMed |
[101] C. B. Taylor, M. F. Talib, C. McCabe, L. Bu, W. S. Adney, M. E. Himmel, M. F. Crowley, G. T. Beckham, J. Biol. Chem. 2012, 287, 3147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWjtr0%3D&md5=e5e97d373713086a4725272a557a6d3aCAS | 22147693PubMed |
[102] G. T. Beckham, J. F. Matthews, Y. J. Bomble, L. Bu, W. S. Adney, M. E. Himmel, M. R. Nimlos, M. F. Crowley, J. Phys. Chem. B 2010, 114, 1447.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs12mtg%3D%3D&md5=100ca7bbc5eb1530e9b410750d404a30CAS | 20050714PubMed |
[103] A. Várnai, M. Siika-aho, L. Viikari, Biotechnol. Biofuels 2013, 6, 30.
| Crossref | GoogleScholarGoogle Scholar | 23442543PubMed |
[104] C. M. Payne, W. Jiang, M. R. Shirts, M. E. Himmel, M. F. Crowley, G. T. Beckham, J. Am. Chem. Soc. 2013, 135, 18831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVCmur%2FF&md5=0e68a236c663408201237fdb6d357311CAS | 24279927PubMed |
[105] A. Teleman, A. Koivula, T. Reinikainen, A. ValkeajÄRvi, T. T. Teeri, T. Drakenberg, O. Teleman, Eur. J. Biochem. 1995, 231, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFaktL8%3D&md5=1e1973a400e399cff226043b4ea24cacCAS | 7628478PubMed |
[106] P. Tomme, H. Tilbeurgh, G. Pettersson, J. Damme, J. Vandekerckhove, J. Knowles, T. Teeri, M. Claeyssens, Eur. J. Biochem. 1988, 170, 575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvVCmsw%3D%3D&md5=facfec3e4699443069989ca19ab0c228CAS | 3338453PubMed |
[107] S. Vonhoff, K. Piens, M. Pipelier, C. Braet, M. Claeyssens, A. Vasella, HeIv. Chim. Acta 1999, 82, 963.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlWqtrw%3D&md5=4fb73aa99a0f37ccfb948b1097b86eb8CAS |
[108] M. Gruno, P. Väljamäe, G. Pettersson, G. Johansson, Biotechnol. Bioeng. 2004, 86, 503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Chu7k%3D&md5=723f81e4da6ef211e4f0db61f182c569CAS | 15129433PubMed |
[109] H. Teugjas, P. Väljamäe, Biotechnol. Biofuels 2013, 6, 104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWgtLrO&md5=a0fe384e3a4856505edfec04a2988941CAS | 23883520PubMed |
[110] R. L. Silveira, M. S. Skaf, J. Phys. Chem. B 2015, 119, 9295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWiu7zE&md5=d2d8b8ad3e6643b4ce7a90ff661fbf28CAS | 25436435PubMed |
[111] H. Palonen, L. Viikari, Biotechnol. Bioeng. 2004, 86, 550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Cgsrw%3D&md5=1448a029b3485e0e2531c9df912803e8CAS | 15129438PubMed |
[112] S. Nakagame, R. P. Chandra, J. F. Kadla, J. N. Saddler, Bioresour. Technol. 2011, 102, 4507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVWnur8%3D&md5=c86044da03284d90cad01cc4fbbfefa3CAS | 21256740PubMed |
[113] S. Nakagame, R. P. Chandra, J. N. Saddler, Biotechnol. Bioeng. 2010, 105, 871.
| 1:CAS:528:DC%2BC3cXisVahtrk%3D&md5=efc44c13465c70cffe77b475055dc2c2CAS | 19998278PubMed |
[114] J. L. Rahikainen, J. D. Evans, S. Mikander, A. Kalliola, T. Puranen, T. Tamminen, K. Marjamaa, K. Kruus, Enzyme Microb. Technol. 2013, 53, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WntrnJ&md5=1e172e51d63c02ccecd2ce43edbc3fb2CAS | 24034430PubMed |
[115] E. M. Nordwald, R. Brunecky, M. E. Himmel, G. T. Beckham, J. L. Kaar, Biotechnol. Bioeng. 2014, 111, 1541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjvFylurs%3D&md5=c55d0be156b8ebd75e5a106b4d807fd9CAS | 24522957PubMed |
[116] A. Nakamura, T. Tsukada, S. Auer, T. Furuta, M. Wada, A. Koivula, K. Igarashi, M. Samejima, J. Biol. Chem. 2013, 288, 13503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFSru78%3D&md5=295f569ee72388b078ad5cbd3943ee3aCAS | 23532843PubMed |
[117] K. Igarashi, T. Uchihashi, A. Koivula, M. Wada, S. Kimura, M. Penttilä, T. Ando, M. Samejima, Methods Enzymol. 2012, 510, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Squ7%2FN&md5=e296a4ba8bf59ddcda8d6213880714c1CAS | 22608726PubMed |
[118] K. Igarashi, T. Uchihashi, A. Koivula, M. Wada, S. Kimura, T. Okamoto, M. Penttilä, T. Ando, M. Samejima, Science 2011, 333, 1279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2jt7jJ&md5=62a260139689793cf364f58a5b75a200CAS | 21885779PubMed |
[119] J. Jung, A. Sethi, T. Gaiotto, J. J. Han, T. Jeoh, S. Gnanakaran, P. M. Goodwin, J. Biol. Chem. 2013, 288, 24164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yhs7rP&md5=c7f30da62e961f9ecbbb351ab6f9117dCAS | 23818525PubMed |
[120] P. J. O’Dell, A. R. Mudinoor, S. J. Parikh, T. Jeoh, Cellulose 2015, 22, 1697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmt1WntLo%3D&md5=86f9ca5b3c651d5400fcc6dedf2af7fbCAS |
[121] S. K. Brady, S. Sreelatha, Y. Feng, S. P. Chundawat, M. J. Lang, Nat. Commun. 2015, 6, 324.
| Crossref | GoogleScholarGoogle Scholar |
[122] J. G. Linger, L. E. Taylor, J. O. Baker, T. Vander Wall, S. E. Hobdey, K. Podkaminer, M. E. Himmel, S. R. Decker, L. Zhao, J. Geng, Biotechnol. Biofuels 2015, 6, 10149.
| Crossref | GoogleScholarGoogle Scholar |
[123] L. C. Basso, T. O. Basso, S. N. Rocha, in Biofuels Production – Recent Developments and Prospects (Ed. M. A. Dos Santos Bernardes) 2011, Ch. 5, pp. 85–100 (In Tech: New York, NY).
[124] A. Alaswad, M. Dassisti, T. Prescott, A. G. Olabi, Renew. Sustain. Energy Rev. 2015, 51, 1446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1KgsbbK&md5=a79a277cd36719a8ff074cd47b9f3df7CAS |
[125] T. Subtil, E. Boles, Biotechnol. Biofuels 2012, 5, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1ajsbg%3D&md5=cda5f54da284aaf1bdb0365220b9d2d9CAS | 22424089PubMed |
[126] A. Madhavan, A. Srivastava, A. Kondo, V. S. Bisaria, Crit. Rev. Biotechnol. 2012, 32, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslyku78%3D&md5=38423764e40b459ad2947f1bc2b5bfffCAS | 21204601PubMed |
[127] V. Sànchez i Nogué, K. Karhumaa, Biotechnol. Lett. 2015, 37, 761.
| Crossref | GoogleScholarGoogle Scholar |
[128] S. R. Kim, Y. C. Park, Y. S. Jin, J. H. Seo, Biotechnol. Adv. 2013, 31, 851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVKjtrk%3D&md5=1ee330fe85cc7ed26ad524387e7ff29bCAS | 23524005PubMed |
[129] Z. P. Çakar, B. Turanli-Yildiz, C. Alkim, U. Yilmaz, FEMS Yeast Res. 2012, 12, 171.
| Crossref | GoogleScholarGoogle Scholar | 22136139PubMed |
[130] M. Dragosits, D. Mattanovich, Microb. Cell Fact. 2013, 12, 64.
| Crossref | GoogleScholarGoogle Scholar | 23815749PubMed |
[131] J. R. Almeida, D. Runquist, V. Sànchez i Nogué, G. Lidén, M. F. Gorwa-Grauslund, Biotechnol. J. 2011, 6, 286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFyqs7k%3D&md5=dbd0c964d12c293da2ae0f5f752e30ffCAS | 21305697PubMed |
[132] C. Laluce, A. C. Schenberg, J. C. Gallardo, L. F. Coradello, S. R. Pombeiro-Sponchiado, Appl. Biochem. Biotechnol. 2012, 166, 1908.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltlGks70%3D&md5=ce240fc3769e8fd99c223e310e2b7353CAS | 22391693PubMed |
[133] K. Fujitomi, T. Sanda, T. Hasunuma, A. Kondo, Bioresour. Technol. 2012, 111, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFWlsr8%3D&md5=fc9d1a2a1e07cb5cd16db479805e01beCAS | 22357292PubMed |
[134] Y. Sakihama, T. Hasunuma, A. Kondo, J. Biosci. Bioeng. 2015, 119, 297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyitbrI&md5=ac644fc309959db1e2e8e124db361235CAS | 25282639PubMed |
[135] Y. C. Li, Z. X. Gou, Z. S. Liu, Y. Q. Tang, T. Akamatsu, K. Kida, Biotechnol. Lett. 2014, 36, 2011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVGqtbrO&md5=ef9488b9ef00d215ec8b91359e7cace8CAS | 24966040PubMed |
[136] T. Hasunuma, K. S. Ismail, Y. Nambu, A. Kondo, J. Biosci. Bioeng. 2014, 117, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WqsrjE&md5=d0c22ae42b7d0450bd094eecf4cd6092CAS | 23916856PubMed |
[137] T. Hasunuma, T. Sanda, R. Yamada, K. Yoshimura, J. Ishii, A. Kondo, Microb. Cell Fact. 2011, 10, 2.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVKmsbo%3D&md5=c569f1947f258da9c87f976a23920307CAS | 21219616PubMed |
[138] V. Wallace-Salinas, M. F. Gorwa-Grauslund, Biotechnol. Biofuels 2013, 6, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVChs7zE&md5=5d9fb619552c17352cbc7821ac6b0a77CAS | 24139317PubMed |
[139] R. Koppram, E. Albers, L. Olsson, Biotechnol. Biofuels 2012, 5, 32.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlyqtb3P&md5=61c7ab217b50c0c84e818e3baeb7e393CAS | 22578262PubMed |
[140] J. Wright, E. Bellissimi, E. de Hulster, A. Wagner, J. T. Pronk, A. J. van Maris, FEMS Yeast Res. 2011, 11, 299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1Oku7k%3D&md5=6e134d3306e594f535f93e5903ee48efCAS | 21251209PubMed |
[141] M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, S. Picataggio, Science 1995, 267, 240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1ensbw%3D&md5=e00b8188caaaf97bbc2038b2e4777893CAS | 17791346PubMed |
[142] A. Mohagheghi, J. G. Linger, S. H. Yang, H. Smith, N. Dowe, M. Zhang, P. T. Pienkos, Biotechnol. Biofuels 2015, 8, 55.
| Crossref | GoogleScholarGoogle Scholar | 25834640PubMed |
[143] Y.-C. Chou, J. Linger, S. Yang, M. Zhang, J. Biotechnol. Biomater. 2015, 5, 179.
[144] A. J. J. Straathof, Chem. Rev. 2014, 114, 1871.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGntbbF&md5=14a70c7a7bec21afb5606df4e8572f5bCAS |
[145] Y. J. Choi, S. Y. Lee, Nature 2013, 502, 571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFaksr%2FK&md5=a4f6cc09e4f5c47999d4634352406771CAS | 24077097PubMed |
[146] E. M. Green, Curr. Opin. Biotechnol. 2011, 22, 337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFSqurs%3D&md5=85ca61a4c5f830ddb00ac3411be9e0ecCAS | 21367598PubMed |
[147] A. Zhang, S. T. Yang, Biotechnol. Bioeng. 2009, 104, 766.
| 1:CAS:528:DC%2BD1MXhtFOrsb3J&md5=dafb355e35fb51e8c5ca1eb8b9f8243aCAS | 19530125PubMed |
[148] L. Jiang, J. Wang, S. Liang, J. Cai, Z. Xu, P. Cen, S. Yang, S. Li, Biotechnol. Bioeng. 2011, 108, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCrtrjL&md5=e99019989750cddbb322b32629b55dd7CAS | 20824675PubMed |
[149] K. Choi, B. Jeon, B.-C. Kim, M.-K. Oh, Y. Um, B.-I. Sang, Appl. Biochem. Biotechnol. 2013, 171, 1094.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWgsr7N&md5=4ef33ccd956334389b139032e36525edCAS | 23754557PubMed |
[150] K. Qiao, S. H. Imam Abidi, H. Liu, H. Zhang, S. Chakraborty, N. Watson, P. Kumaran Ajikumar, G. Stephanopoulos, Metab. Eng. 2015, 29, 56.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvVGgsbg%3D&md5=431d0d25c3c1bcfb9c23349902183f0fCAS | 25732624PubMed |
[151] Y. S. Jang, B. Kim, J. H. Shin, Y. J. Choi, S. Choi, C. W. Song, J. Lee, H. G. Park, S. Y. Lee, Biotechnol. Bioeng. 2012, 109, 2437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVWhu73J&md5=4277953d9651d99e0b9a6c26c0c621d5CAS | 22766912PubMed |
[152] R. Davis, L. Tao, E. Tan, M. J. Biddy, G. T. Beckham, C. Scarlata, J. Jacobson, K. Cafferty, J. Ross, J. Lukas, D. Knorr, P. Schoen, Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid Prehydrolysis and Enzymatic Hydrolysis Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons 2013 (National Renewable Energy Laboratory: Golden, CO).
[153] P. T. Pienkos, M. Zhang, Cellulose 2009, 16, 743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlyitbw%3D&md5=4d70da0189f28f5c7670de1325f87b2cCAS |
[154] E. Palmqvist, B. Hahn-Hägerdal, Bioresour. Technol. 2000, 74, 25.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Ggs7s%3D&md5=f38a172d74b38da6f6d64d862c1a8952CAS |
[155] D. Salvachua, A. Mohaghaghi, H. Smith, M. F. A. Bradfield, W. Nicol, B. A. Black, M. J. Biddy, N. Dowe, G. T. Beckham, Biotechnol. Biofuels 2016, in press.
| 26839591PubMed |
[156] Y. Chen, M. A. Stevens, Y. Zhu, J. Holmes, H. Xu, Biotechnol. Biofuels 2013, 6, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1agtg%3D%3D&md5=9112e702fe26466b2c6924139daf4dd2CAS | 23298573PubMed |
[157] E. M. Karp, M. G. Resch, B. S. Donohoe, P. N. Ciesielski, M. H. O’Brien, J. E. Nill, A. Mittal, M. Biddy, G. T. Beckham, ACS Sustainable Chem. Eng. 2015, 3, 1479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXot1ehuro%3D&md5=96ee38f82f34f81678d7d6415bf44d3eCAS |
[158] J. G. Linger, D. R. Vardon, M. T. Guarnieri, E. M. Karp, G. B. Hunsinger, M. A. Franden, C. W. Johnson, G. Chupka, T. J. Strathmann, P. T. Pienkos, G. T. Beckham, Proc. Natl. Acad. Sci. USA 2014, 111, 12013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1GqtLnJ&md5=6b4680d2e6ac5ae40ff92c5a0f909c82CAS | 25092344PubMed |
[159] D. R. Vardon, M. A. Franden, C. W. Johnson, E. M. Karp, M. T. Guarnieri, J. G. Linger, M. J. Salm, T. J. Strathmann, G. T. Beckham, Energy Environ. Sci. 2015, 8, 617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFags7zL&md5=e6cfebb287f5d7d43f80fcfb92d7dfaaCAS |
[160] X. Chen, W. Wang, P. N. Ciesielski, O. Trass, S. Park, L. Tao, M. Tucker, ACS Sustainable Chem. Eng. 2016, 4, 324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVCjtbrK&md5=8dcd131dbf1bf8d7f462b2b62ee352bbCAS |
[161] S. P. S. Chundawat, G. T. Beckham, M. E. Himmel, B. E. Dale, Annu. Rev. Chem. Biomol. Eng. 2011, 2, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWmsbbI&md5=d2be0db1d3207321de739568d82487a7CAS |
[162] M. F. Bradfield, A. Mohagheghi, D. Salvachúa, H. Smith, B. A. Black, N. Dowe, G. T. Beckham, W. Nicol, Biotechnol. Biofuels 2015, 8, 181.
| Crossref | GoogleScholarGoogle Scholar | 26581168PubMed |
[163] P. P. Peralta-Yahya, F. Zhang, S. B. del Cardayre, J. D. Keasling, Nature 2012, 488, 320.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WktL3F&md5=ae47c8be2c911611de34e31f3809a3b0CAS | 22895337PubMed |
[164] D. E. Agnew, B. F. Pfleger, Chem. Eng. Sci. 2013, 103, 58.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlarsrk%3D&md5=c5525221a534508c69f5bf8a7f8971bcCAS |
[165] S. Camarero, M. J. Martínez, A. T. Martínez, Biofuels Bioprod. Biorefin. 2014, 8, 615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXit1KqtA%3D%3D&md5=4f3520203346f1c9dfd4933bcf383b9cCAS |
[166] J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 2010, 110, 3552.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVyjsrw%3D&md5=928e1d3e8e5943ad1f0f6121cdf222e4CAS | 20218547PubMed |
[167] R. Paul, A. Naskar, N. Gallego, X. Dai, A. Hausner, Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review 2015 (GrafTech International Holdings Inc.: Oak Ridge, TN).
[168] M. Fache, B. Boutevin, S. Caillol, ACS Sustainable Chem. Eng. 2016, 4, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvF2itr7E&md5=bfb0c6670532a29f2e01cd50a8d0dfc1CAS |
[169] R. Ma, Y. Xu, X. Zhang, ChemSusChem 2015, 8, 24.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivVWhuw%3D%3D&md5=233bc0157c78d903d0769610305e6ce6CAS | 25272962PubMed |
[170] P. Ferrini, R. Rinaldi, Angew. Chem. Int. Ed. 2014, 53, 8634.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1ynsr4%3D&md5=43d007e91cc0f8799acd47038650f402CAS |
[171] Q. Song, F. Wang, J. Cai, Y. Wang, J. Zhang, W. Yu, J. Xu, Energy Environ. Sci. 2013, 6, 994.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVGktrg%3D&md5=9c3abcfd11013bfe1df4045e33523d23CAS |
[172] W. Schutyser, S. Van den Bosch, T. Renders, T. De Boe, S.-F. Koelewijn, A. Dewaele, T. Ennaert, O. Verkinderen, B. Goderis, C. Courtin, Green Chem. 2015, 17, 5035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVCis7fJ&md5=327f1b9096969921ac200d0105ea6945CAS |
[173] T. Parsell, S. Yohe, J. Degenstein, T. Jarrell, I. Klein, E. Gencer, B. Hewetson, M. Hurt, J. I. Kim, H. Choudhari, B. Saha, R. Meilan, N. Mosier, F. Ribeiro, W. N. Delgass, C. Chapple, H. I. Kenttämaa, R. Agrawal, M. M. Abu-Omar, Green Chem. 2015, 17, 1492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitV2itLnE&md5=08c4ae09bfc7463a71bc6da94450add3CAS |
[174] G. Fuchs, M. Boll, J. Heider, Nat. Rev. Microbiol. 2011, 9, 803.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CrsbjF&md5=16de703fde0d453ec66a7fede9e44f24CAS | 21963803PubMed |
[175] D. Salvachúa, E. M. Karp, C. T. Nimlos, D. R. Vardon, G. T. Beckham, Green Chem. 2015, 17, 4951.
| Crossref | GoogleScholarGoogle Scholar |
[176] C. W. Johnson, G. T. Beckham, Metab. Eng. 2015, 28, 240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVGhtr8%3D&md5=e48f97b2251deb767e56e8dd42e8680cCAS | 25617773PubMed |
[177] R. Lu, F. Lu, J. Chen, W. Yu, Q. Huang, J. Zhang, J. Xu, Angew. Chem. 2016, 128, 257.
| Crossref | GoogleScholarGoogle Scholar |
[178] M. McCann, M. Abu-Omar, R. Agrawal, J. Bozell, N. Carpita, C. Chapple, M. Crowley, N. Delgass, B. Donohoe, M. Himmel, H. Kenttamaa, L. Makowski, R. Meilan, N. Mosier, A. Murphy, W. Peer, F. Ribeiro, M. Tucker, FASEB J. 2015, 29, Supplement 485.3
| Crossref | GoogleScholarGoogle Scholar |
[179] Foresight. The Future of Food and Farming. Final Project Report 2011 (The Government Office for Science: London).
[180] D. Loqué, H. V. Scheller, M. Pauly, Curr. Opin. Plant Biol. 2015, 25, 151.
| Crossref | GoogleScholarGoogle Scholar | 26051036PubMed |
[181] C. J. Liu, Y. Cai, X. Zhang, M. Gou, H. Yang, Plant Biotechnol. J. 2014, 12, 1154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVaqsrvJ&md5=fb8bdcb2176d58be58c6d985470ee53bCAS | 25209835PubMed |
[182] M. Kumar, L. Campbell, S. Turner, J. Exp. Biol. 2016, 67, 515.
[183] C. R. Poovaiah, M. Nageswara-Rao, J. R. Soneji, H. L. Baxter, C. N. Stewart, Plant Biotechnol. J. 2014, 12, 1163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVaqsrvP&md5=43588a9dd435f2c7d70d0f203267916fCAS | 25051990PubMed |
[184] Q. Li, J. Song, S. Peng, J. P. Wang, G. Z. Qu, R. R. Sederoff, V. L. Chiang, Plant Biotechnol. J. 2014, 12, 1174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVaqsrvI&md5=c11ff54c0e5a3d8c51ed70f66d2eb10fCAS | 25330253PubMed |
[185] J. Stulke, W. Hillen, Curr. Opin. Microbiol. 1999, 2, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFamtb0%3D&md5=5d512dceabe823ae7a4802a83e0480dfCAS | 10322165PubMed |
[186] H.-T. Tan, N. J. Shirley, R. R. Singh, M. Henderson, K. S. Dhugga, G. M. Mayo, G. B. Fincher, R. A. Burton, BMC Plant Biol. 2015, 15, 62.
| Crossref | GoogleScholarGoogle Scholar | 25850007PubMed |
[187] C. P. Joshi, S. Thammannagowda, T. Fujino, J. Q. Gou, U. Avci, C. H. Haigler, L. M. McDonnell, S. D. Mansfield, B. Mengesha, N. C. Carpita, D. Harris, S. Debolt, G. F. Peter, Mol. Plant 2011, 4, 331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFehurg%3D&md5=dce1bdca41cec4e1f9dd9672894134e3CAS | 21300756PubMed |
[188] L. Xu, Plant Omics 2014, 7, 54.
| 1:CAS:528:DC%2BC2cXhtlOnsL%2FN&md5=5a3c0cc742c565c0c67bb0a8e5fe7dbfCAS |
[189] H. D. Coleman, J. Yan, S. D. Mansfield, Proc. Natl. Acad. Sci. USA 2009, 106, 13118.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKru7zE&md5=b4e9c786633ffe122f0446f39798bab3CAS | 19625620PubMed |
[190] G. Zhang, J. Qi, J. Xu, X. Niu, Y. Zhang, A. Tao, L. Zhang, P. Fang, L. Lin, Biochem. Biophys. Res. Commun. 2013, 442, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2qsr3L&md5=6529e16d71d8ab79f26c709167ac01a7CAS | 24269810PubMed |
[191] G. Zhang, J. Deng, J. Xu, J. Qi, Am. J. Microbiol. Biotech. 2015, 2, 64.
[192] N. Li, L. Wang, W. Zhang, K. Takechi, H. Takano, X. Lin, Plant Cell Rep. 2014, 33, 779.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVSquw%3D%3D&md5=cfc01992e4d22edb24fb51e333250b1fCAS | 24408396PubMed |
[193] D. K. Sahoo, J. Stork, S. DeBolt, I. B. Maiti, Plant Biotechnol. J. 2013, 11, 362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlOms78%3D&md5=4853e074230f9085507b80efc0c4f5aeCAS | 23527628PubMed |
[194] M. Sumiyoshi, A. Nakamura, H. Nakamura, M. Hakata, H. Ichikawa, H. Hirochika, T. Ishii, S. Satoh, H. Iwai, PLoS One 2013, 8, e78269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGisLzK&md5=9096387039bed6ac6a5fa69725a3c287CAS | 24223786PubMed |
[195] M. E. Vega-Sánchez, D. Loqué, J. Lao, M. Catena, Y. Verhertbruggen, T. Herter, F. Yang, J. Harholt, B. Ebert, E. E. K. Baidoo, J. D. Keasling, H. V. Scheller, J. L. Heazlewood, P. C. Ronald, Plant Biotechnol. J. 2015, 13, 903.
| Crossref | GoogleScholarGoogle Scholar | 25586315PubMed |
[196] A. K. Biswal, Z. Hao, S. Pattathil, X. Yang, K. Winkeler, C. Collins, S. S. Mohanty, E. A. Richardson, I. Gelineo-Albersheim, K. Hunt, D. Ryno, R. W. Sykes, G. B. Turner, A. Ziebell, E. Gjersing, W. Lukowitz, M. F. Davis, S. R. Decker, M. G. Hahn, D. Mohnen, Biotechnol. Biofuels 2015, 8, 41.
| Crossref | GoogleScholarGoogle Scholar | 25802552PubMed |
[197] H. G. Jung, K. P. Vogel, J. Anim. Sci. 1986, 62, 1703.
| 1:STN:280:DyaL283nslKksg%3D%3D&md5=514bd0684beac97d67ae855630ba7ebdCAS | 3733564PubMed |
[198] H. J. G. Jung, W. T. Ni, C. C. S. Chapple, K. Meyer, J. Sci. Food Agric. 1999, 79, 922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVOkt7g%3D&md5=af37f2d1ce1a7413c0fa89229e9e7cf5CAS |
[199] R. Franke, M. R. Hemm, J. W. Denault, M. O. Ruegger, J. M. Humphreys, C. Chapple, Plant J. 2002, 30, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFGhu7Y%3D&md5=04cbf23e4885dc651c03d53be22fb660CAS | 11967092PubMed |
[200] P. N. Ciesielski, C. J. Faulkner, M. T. Irwin, J. M. Gregory, N. H. Tolk, D. E. Cliffel, G. K. Jennings, Adv. Funct. Mater. 2010, 20, 4048.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFClurnJ&md5=e6c8b4a09ac344b66112732f37b347dfCAS |
[201] J. M. Marita, J. Ralph, R. D. Hatfield, C. Chapple, Proc. Natl. Acad. Sci. USA 1999, 96, 12328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1yrtLw%3D&md5=1261a6aafc8009f1e47e4882ba77c47cCAS | 10535921PubMed |
[202] K. Meyer, J. C. Cusumano, C. Somerville, C. C. S. Chapple, Proc. Natl. Acad. Sci. USA 1996, 93, 6869.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1Wiur4%3D&md5=ea7dc7552fe3b01c58cd6f80b614d0ccCAS | 8692910PubMed |
[203] X. Li, E. Ximenes, Y. Kim, M. Slininger, R. Meilan, M. Ladisch, C. Chapple, Biotechnol. Biofuels 2010, 3, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2iu73M&md5=007452a0a924f0bd5ee4cd3d77f5b0ceCAS | 21126354PubMed |
[204] S. D. Mansfield, K.-Y. Kang, C. Chapple, New Phytol. 2012, 194, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltlGiu7g%3D&md5=6dcedc831baff5bc183efadc10523a79CAS | 22239166PubMed |
[205] P. N. Ciesielski, M. G. Resch, B. Hewetson, J. P. Killgore, A. Curtin, N. Anderson, A. N. Chiaramonti, D. C. Hurley, A. Sanders, M. E. Himmel, Green Chem. 2014, 16, 2627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsFaiu7o%3D&md5=a3fa525fc0b0dc209acf29925657d351CAS |
[206] N. D. Bonawitz, J. I. Kim, Y. Tobimatsu, P. N. Ciesielski, N. A. Anderson, E. Ximenes, J. Maeda, J. Ralph, B. S. Donohoe, M. Ladisch, C. Chapple, Nature 2014, 509, 376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVyqtbw%3D&md5=0bd133c1ce1ce82c141f9bdc3f1ccba2CAS | 24670657PubMed |
[207] F. Yang, P. Mitra, L. Zhang, L. Prak, Y. Verhertbruggen, J. S. Kim, L. Sun, K. Zheng, K. Tang, M. Auer, H. V. Scheller, D. Loque, Plant Biotechnol. J. 2013, 11, 325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlOmsrk%3D&md5=7f4e2a000993643fa7e1a19467bc77c4CAS | 23140549PubMed |
[208] C. Y. Lin, J. P. Wang, Q. Li, H. C. Chen, J. Liu, P. Loziuk, J. Song, C. Williams, D. C. Muddiman, R. R. Sederoff, V. L. Chiang, Mol. Plant 2015, 8, 176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtValsLo%3D&md5=1978785c9da9864a4b47e6a14a224f4dCAS | 25578281PubMed |
[209] M. Faraji, L. L. Fonseca, L. Escamilla-Trevino, R. A. Dixon, E. O. Voit, Biotechnol. Biofuels 2015, 8, 151.
| Crossref | GoogleScholarGoogle Scholar | 26388938PubMed |
[210] J. P. Wang, L. Chuang, P. L. Loziuk, H. Chen, Y. C. Lin, R. Shi, G. Z. Qu, D. C. Muddiman, R. R. Sederoff, V. L. Chiang, Proc. Natl. Acad. Sci. USA 2015, 112, 8481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOhsbrK&md5=3cd3ecc0ed5f54dbf02f64e257beb0a5CAS | 26109572PubMed |
[211] H. Wei, B. S. Donohoe, T. B. Vinzant, P. N. Ciesielski, W. Wang, L. M. Gedvilas, Y. Zeng, D. K. Johnson, S.-Y. Ding, M. E. Himmel, M. P. Tucker, Biotechnol. Biofuels 2011, 4, 48.
| Crossref | GoogleScholarGoogle Scholar | 22074910PubMed |
[212] H. Wei, H. Yang, P. N. Ciesielski, B. S. Donohoe, M. C. McCann, A. S. Murphy, W. A. Peer, S.-Y. Ding, M. E. Himmel, M. P. Tucker, Biomass Bioenergy 2015, 72, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFanur%2FE&md5=ecc72ef74f5f7681f85040a7d3d63f05CAS |
[213] B. Shen, X. Sun, X. Zuo, T. Shilling, J. Apgar, M. Ross, O. Bougri, V. Samoylov, M. Parker, E. Hancock, H. Lucero, B. Gray, N. A. Ekborg, D. Zhang, J. C. S. Johnson, G. Lazar, R. M. Raab, Nat. Biotechnol. 2012, 30, 1131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFeqs7zM&md5=69ddca5b6996dbf660c5243e4f4f17b3CAS | 23086202PubMed |
[214] L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraffini, F. Zhang, Science 2013, 339, 819.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ygtb8%3D&md5=d3f53988d10c7970fd9175cd421f499cCAS | 23287718PubMed |
[215] T. Gaj, C. A. Gersbach, C. F. Barbas, Trends Biotechnol. 2013, 31, 397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVyiu7c%3D&md5=1ffae380c13fe45b3b1fc3bcee1d9188CAS | 23664777PubMed |
[216] T. Wendt, P. B. Holm, C. G. Starker, M. Christian, D. F. Voytas, H. Brinch-Pedersen, I. B. Holme, Plant Mol. Biol. 2013, 83, 279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyltbzK&md5=4fd9b4fa886b22587b439b985ebc99e7CAS | 23689819PubMed |
[217] Q. Shan, Y. Wang, J. Li, Y. Zhang, K. Chen, Z. Liang, K. Zhang, J. Liu, J. J. Xi, J. L. Qiu, C. Gao, Nat. Biotechnol. 2013, 31, 686.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Cgsb%2FI&md5=98c1a528f251c18110bd615e7d6c193bCAS | 23929338PubMed |
[218] K. Xie, Y. Yang, Mol. Plant 2013, 6, 1975.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVart7vP&md5=da104c49065412269bdfabd6709f680dCAS | 23956122PubMed |
[219] V. Nekrasov, B. Staskawicz, D. Weigel, J. D. Jones, S. Kamoun, Nat. Biotechnol. 2013, 31, 691.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CgtrnP&md5=bc337a6958147a95af485419c0c7d5a0CAS | 23929340PubMed |
[220] Y. Zhang, F. Zhang, X. Li, J. A. Baller, Y. Qi, C. G. Starker, A. J. Bogdanove, D. F. Voytas, Plant Physiol. 2013, 161, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVClur8%3D&md5=153648ed47dd365430de0a651ba45eb7CAS | 23124327PubMed |
[221] W. Jiang, H. Zhou, H. Bi, M. Fromm, B. Yang, D. P. Weeks, Nucleic Acids Res. 2013, 41, e188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWrt73E&md5=c28a295a64a83b3cc6e2cab6a4265784CAS | 23999092PubMed |
[222] H. Jia, N. Wang, PLoS One 2014, 9, e93806.
| Crossref | GoogleScholarGoogle Scholar | 24710347PubMed |
[223] Z. Liang, K. Zhang, K. Chen, C. Gao, J. Genet. Genomics 2014, 41, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWgtbvL&md5=6cae2a2cae307cc76fe6a987d9108510CAS | 24576457PubMed |
[224] J.-M. Michno, X. Wang, J. Liu, S. J. Curtin, T. J. Y. Kono, R. M. Stupar, GM Crops Food 2015, 6, 243.
| Crossref | GoogleScholarGoogle Scholar | 26479970PubMed |