The Influence of Amino Group Position on Aryl Moiety of SarAr on Metal Complexation and Protein Labelling
Vincent Jamier A B , Eskender Mume A C , Cyril Papamicaël B and Suzanne. V. Smith A C DA Center of Excellence in Antimatter Matter Studies (CAMS), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC NSW 2232, Australia.
B UMR CNRS COBRA 6014, 1 Rue Tesnière 76130 Mont-Saint-Aignan, France.
C CAMS, Australian National University, Canberra, ACT 0200, Australia.
D Corresponding author. Email: Suzanneoznq@gmail.com
Australian Journal of Chemistry 69(9) 1054-1061 https://doi.org/10.1071/CH15794
Submitted: 6 October 2015 Accepted: 17 March 2016 Published: 10 May 2016
Abstract
New hexaazamacrobicyclic cage bi-functional chelators (BFCs), 1-N-(3-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1,8-diamine (m-SarAr) and 1-N-(2-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1,8-diamine (o-SarAr), were synthesised. Their complexation with selected transitions metal ions i.e. CuII, CoII, and CdII was investigated over a range of pH at micromolar concentrations. CuII was complexed by m-SarAr and o-SarAr rapidly within 5 min in pH range of 5–9 at ambient temperature. In contrast, the complexation of CoII and CdII by these ligands was slower. The conjugation efficiencies of p-SarAr, m-SarAr, and o-SarAr to bovine serum albumin (BSA) were compared under various reactions. Conditions were optimised to a molar ratio of BSA/N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC)/BFC of 1 : 250 : 50 in pH 5 buffer for 30 min at ambient temperature. Under these conditions, the average number of p-SarAr, m-SarAr, or o-SarAr attached to BSA were determined to be 2.21 ± 0.16, 4.90 × 10–1 ± 2.48 × 10–2, and 2.67 × 10–2 ± 2.67 × 10–3, respectively. This fundamental study clearly demonstrates that the position of the amine on the phenyl ring has a significant effect on the metal complexation and conjugation reactions with BSA.
References
[1] D. L. Morse, R. J. Gillies, Biochem. Pharmacol. 2010, 80, 731.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosV2isLk%3D&md5=d8e9d3a340ab5e188fb7042c894fc8c6CAS | 20399197PubMed |
[2] J. M. Hooker, Curr. Opin. Chem. Biol. 2010, 14, 105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qt7w%3D&md5=6ebe24b639867b6478d9f049110d378cCAS | 19880343PubMed |
[3] S. V. Smith, Expert Opin. Drug Discovery 2007, 2, 659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFynur0%3D&md5=2e1853843f3f75ccff7e0e05b1023f04CAS |
[4] S. S. Gambhir, Nat. Rev. Cancer 2002, 2, 683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslanu7c%3D&md5=02e98191416aa983dd48fa5099db411cCAS | 12209157PubMed |
[5] S. V. Smith, J. Inorg. Biochem. 2004, 98, 1874.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlOktL0%3D&md5=c239789316825bed4fdad7bed361d7bcCAS | 15522415PubMed |
[6] S. V. Smith, M. Jones, V. Holmes, Production and Selection of Metal PET Radioisotopes for Molecular Imaging (Ed. N. Singh) 2011 (ISBN: 978–953–307–748–2, InTech, https://doi.org/
[7] N. M. Di Bartolo, A. M. Sargeson, T. M. Donlevy, S. V. Smith, J. Chem. Soc., Dalton Trans. 2001, 2303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVWntL8%3D&md5=a3eef448081fc6469827190bcb257296CAS |
[8] N. M. Di Bartolo, A. M. Sargeson, S. V. Smith, Org. Biomol. Chem. 2006, 4, 3350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotl2nsbk%3D&md5=01a6b9f262bff93bb1b96019d9c6ae03CAS |
[9] E. Mume, D. E. Lynch, A. Uedono, S. V. Smith, Dalton Trans. 2011, 40, 6278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvF2qtbg%3D&md5=dc09f0ffc2aa5df225f66dcffd60019fCAS | 21409200PubMed |
[10] S. D. Voss, S. V. Smith, N. Di Bartolo, L. J. McIntosh, E. M. Cyr, A. A. Bonab, J. L. J. Dearling, E. A. Carter, A. J. Fischman, S. T. Treves, S. D. Gillies, A. M. Sargeson, J. S. Huston, A. B. Packard, Proc. Natl. Acad. Sci. USA 2007, 104, 17489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymtrfO&md5=27299ae98e42a6088272cf95a9f04083CAS | 17954911PubMed |
[11] A. H. Asad, S. V. Smith, L. Kong, E. Mume, C. M. Jeffery, L. Morandeau, R. I. Roger, J. Labelled Compd. Radiopharm. 2013, 56, S248.
| Crossref | GoogleScholarGoogle Scholar |
[12] L. G. Kong, E. Mume, G. Triani, S. V. Smith, Langmuir 2013, 29, 5609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVyksbY%3D&md5=f7af97340313bde55e44213993964f06CAS |
[13] R. W. Ormsby, T. McNally, C. A. Mitchell, A. Musumeci, T. Schiller, P. Halley, L. Gahan, D. Martin, S. V. Smith, N. J. Dunne, Acta Mater. 2014, 64, 54.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslag&md5=977e02d24a4626457f46eb5624fd9678CAS |
[14] (a) M. T. Ma, J. A. Karas, J. M. White, D. B. Scanlon, P. S. Donnelly, Chem. Commun. 2009, 3237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Wiurg%3D&md5=0375b9da88eb1e4dbe117445f2546be4CAS |
(b) M. T. Ma, O. C. Neels, D. Denoyer, P. Roselt, J. A. Karas, D. B. Scanlon, J. M. White, R. J. Hicks, P. S. Donnelly, Bioconjugate Chem. 2011, 22, 2093.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. S. Cooper, M. T. Ma, K. Sunassee, K. P. Shaw, J. D. Williams, R. L. Paul, P. S. Donnelly, P. J. Blower, Bioconjugate Chem. 2012, 23, 1029.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. M. Paterson, P. Roselt, D. Denoyer, C. Cullinane, D. Binns, W. Noonan, C. M. Jeffery, R. I. Price, J. M. White, R. J. Hicks, P. S. Donnelly, Dalton Trans. 2014, 43, 1386.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) H. C. Cai, J. Fissekis, P. S. Conti, Dalton Trans. 2009, 5395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVOltbs%3D&md5=e1129198e353efbd9c21f0bc8f875808CAS |
(b) H. Cai, Z. Li, C.-W. Huang, R. Park, A. H. Shahinian, P. S. Conti, Nucl. Med. Biol. 2010, 37, 57.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Cai, Z. Li, C.-W. Huang, A. H. Shahinian, H. Wang, R. Park, P. S. Conti, Bioconjugate Chem. 2010, 21, 1417.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Cai, Z. Li, C.-W. Huang, R. Park, P. S. Conti, Curr. Radiopharm. 2011, 4, 68.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Liu, D. Li, C.-W. Huang, L.-P. Yap, R. Park, H. Shan, Z. Li, P. S. Conti, Mol. Imaging Biol. 2012, 14, 718.
| Crossref | GoogleScholarGoogle Scholar |
(f) L. Y. Hu, N. Bauer, L. M. Knight, Z. Li, S. Liu, C. J. Anderson, P. S. Conti, J. L. Sutcliffe, Mol. Imaging Biol. 2014, 16, 567.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) W. M. Rockey, L. Huang, K. C. Kloepping, N. J. Baumhover, P. H. Giangrande, M. K. Schultz, Bioorg. Med. Chem. 2011, 19, 4080.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVehsb8%3D&md5=c8e8b2bc3a2e2ba4e438c51aadd1e32aCAS | 21658962PubMed |
(b) S. Liu, D. Li, C.-H. Huang, L.-P. Yap, R. Park, H. Shan, Z. Li, Theranostics 2012, 2, 589.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. W. Brechbiel, O. A. Gansow, Bioconjugate Chem 1991, 187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVChtrg%3D&md5=585ceed78c039cbc5f4d44722dd3c55fCAS |
[18] L. Camera, S. Kinuya, K. Garmestani, C. Wu, M. W. Brechbiel, L. H. Pai, T. J. McMurry, O. A. Gansow, I. Pastan, C. H. Paik, J. A. Carrasquillo, J. Nucl. Med. 1994, 35, 882.
| 1:CAS:528:DyaK2cXlsFahtLo%3D&md5=eaa827ff494b2db03a6b2b202424de58CAS | 8176477PubMed |
[19] (a) M. K. Moi, S. J. DeNardo, C. F. Meares, Cancer Res. 1990, 50, 789s.
| 1:CAS:528:DyaK3cXhvFCmtLo%3D&md5=d3e1603961ae62e114cc8b047af45708CAS | 2297725PubMed |
(b) H. S. Chong, X. Ma, T. Le, B. Kwamena, D. E. Melenic, E. D. Brady, H. A. Song, M. W. Brechbiel, J. Med. Chem. 2008, 51, 118.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) M. W. Sundberg, C. F. Meares, D. A. Goodwin, C. I. Diamanti, Nature 1974, 250, 587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXks1Gnsrg%3D&md5=b0cfc4b4ac43470a36092c703736dd6bCAS | 4210879PubMed |
(b) M. W. Sundberg, C. F. Meares, D. A. Goodwin, C. I. Diamanti, J. Med. Chem. 1974, 17, 1304.
| Crossref | GoogleScholarGoogle Scholar |
[21] I. A. Müller, F. Kratz, M. Jung, A. Warnecke, Tetrahedron Lett. 2010, 51, 4371.
| Crossref | GoogleScholarGoogle Scholar |
[22] G. A. Bottomley, I. J. Clark, L. M. Creaser, R. J. Engelhardt, K. S. Geue, J. M. Hagen, G. A. Harrowfield, P. A. Lawrance, A. M. Lay, A. J. Sargeson, B. W. See, A. H. Skelton, F. R. White, Wilner, Aust. J. Chem. 1994, 47, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtFChtrc%3D&md5=57cae71f57a297409259966a86f0b54eCAS |
[23] Y. Altun, J. Solution Chem. 2004, 33, 479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Cgurs%3D&md5=c3cdebbfc8f6c18f82fdc694322a6e24CAS |
[24] E. Norkus, A. Vaskelis, A. Griguceviciene, G. Rozovskis, J. Reklaitis, P. Norkus, Transition Met. Chem. (Weinh.) 2001, 26, 465.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVemt7k%3D&md5=5374c6282321ae4fdc84042d1370ac3dCAS |
[25] (a) A. M. Sargeson, Pure Appl. Chem. 1986, 58, 1511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsFWmsg%3D%3D&md5=1a9c6007cdd638801c39a7bb3d23e1d6CAS |
(b) L. R. Gahan, J. M. Harrowfield, Polyhedron 2015, 94, 1.
| Crossref | GoogleScholarGoogle Scholar |
[26] D. M. Goldenberg, in Cancer Imaging with Radiolabelled Antibodies (Ed. D. M. Goldenberg) 1990 (Kluwer Academic Publishers: Boston, MA).
[27] M. Pourbaix, in Atlas of Electrochemical Equilibria in Aqueous Solutions 1974 (National Association of Corrosion Engineers: Houston, TX).
[28] A. M. T. Bygott, R. J. Geue, S. F. Ralph, A. M. Sargeson, A. C. Willis, Dalton Trans. 2007, 4778.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyrurnK&md5=d9b8b30c71edfa9cba56844583c30385CAS |
[29] L. Grøndahl, A. Hammershøi, A. M. Sargeson, V. J. Thöm, Inorg. Chem. 1997, 36, 5396.
| Crossref | GoogleScholarGoogle Scholar |
[30] (a) C. G. Raison, Nature 1949, 163, 485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXjtFKltg%3D%3D&md5=cc607b0bcac02e5dfb544c88680892a1CAS | 18224894PubMed |
(b) P. L. Carl, P. K. Chakravarty, J. A. Katzenellenbogen, J. Med. Chem. 1981, 24, 479.
| Crossref | GoogleScholarGoogle Scholar |