Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Novel Self-Assembled Hierarchical-Structured Catalyst for the Diffusion of Macromolecules

Wei Ding A C D , Dingcong Wang B D , Dezhi Zhao C and Ming Ke A D
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.

B Fushun Research Institute of Petroleum and Petrochemicals, Fushun, Liaoning 113001, China.

C College of Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China.

D Corresponding authors. Email: cicy1125@163.com; wangdingcong@hotmail.com; keming@cup.edu.cn

Australian Journal of Chemistry 69(8) 856-864 https://doi.org/10.1071/CH15747
Submitted: 21 September 2015  Accepted: 16 February 2016   Published: 15 March 2016

Abstract

A novel self-assembled catalyst, FA-Z30, possessing a mesoporous/macroporous structure is prepared and applied to FCC diesel hydrodesulfurization (HDS). The catalyst has 54 % of the total pore volume lying within 30–60 nm pores, greater than 26 % of the continuous phase. This indicates interconnected pores. N2 adsorption data show a bimodal structure with pores ranging between 30–60 nm and <10 nm. Textural properties of the catalyst show that the pore volume is 0.78 cm g–1 having a specific surface area of 181 m2 g–1 with a most probable pore diameter of 20 nm. The catalyst possesses a low active metal concentration of ~154.9 g L–1 per unit volume and a low bulk density of ~0.50 g cm–3. X-Ray diffraction, high resolution transmission electron microscopy, and X-ray photoelectron spectroscopy show improved active metal dispersion with an average MoS2 layered slab number of 3–7, having lengths ranging from 5 to 10 nm. Molybdenum sulfide sulfidity at 75 % is higher than the commercial catalyst, FCB, at 62 %. The activity and stability of HDS and hydrodenitrification (HDN) are improved, as is aromatics saturation (HDAr) reflected by limited coke formation. Average conversion rates of HDS, HDN, and HDAr are 95, 97, and 67 % at 100 h on stream for FA-Z30, respectively, and their respective rates of 6.1, 6.3, and 4.3 % per unit volume of active metal is twice that of the commercial catalyst. The low bulk density of FA-Z30 improves the utilization rate and relative activity of the active metals. FA-Z30 is a promising catalyst for FCC diesel hydrogenation.


References

[1]  C. S. Song, Catal. Today 2003, 86, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVCnsLc%3D&md5=af6e38f620b3bc6b8ffd4620bbcf2240CAS |

[2]  Y. E. Licea, S. L. Amaya, A. Echavarria, J. Bettini, J. G. Eon, L. A. Palacio, A. C. Faro, Catal. Sci. Technol. 2014, 4, 1227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1Ghs74%3D&md5=a4bac87e9912b12fc9070e4597a35beaCAS |

[3]     (a) J. M. Thomas, W. J. Thomas, Catalysis from A to Z: A Concise Encyclopedia 2000 (Wiley-VCH: Weinheim).
      (b) A. Corma, F. Rey, S. Valencia, J. L. Jorda, J. Rius, Nat. Mater. 2003, 2, 493.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) F. Liu, S. P. Xu, L. Cao, Y. Chi, T. Zhang, D. F. Xue, J. Phys. Chem. C 2007, 111, 7396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslaru70%3D&md5=d717542f1b73b1e8836327a8f2d9b060CAS |
      (b) K. K. Zhu, D. H. Wang, J. Liu, Nano Res. 2009, 2, 1.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. R. Ling, B. Z. Wan, H. P. Lin, C. Y. Mou, Ind. Eng. Chem. Res. 2009, 48, 1797.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) W. L. Huang, B. J. Liu, F. M. Sun, Z. H. Zhang, X. J. Bao, Microporous Mesoporous Mater. 2006, 94, 254.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlSrsr4%3D&md5=280c7c7825d5a5f4bd79714334f7f8d5CAS |
      (b) Y. S. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 2006, 106, 896.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) G. C. Li, H. J. Zhao, R. Y. Zhao, C. G. Liu, Pet. Process. Petrochem. 2010, 41, 49.[in Chinese].
      (b) S. K. Maity, L. Flores, J. Ancheyta, H. Fukuyama, Ind. Eng. Chem. Res. 2009, 48, 1190.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Fan, H. Xiao, G. Shi, H. Y. Liu, X. J. Bao, Energy Environ. Sci. 2011, 4, 572.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  G. M. Dhar, B. N. Srinivas, M. S. Rana, M. Kumar, S. K. Maity, Catal. Today 2003, 86, 45.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVCns7c%3D&md5=6598983c3f82672b2fe1086f04fa2357CAS |

[8]  J. A. Delgado, A. E. Rodrigues, Ind. Eng. Chem. Res. 2001, 40, 2289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Sltrs%3D&md5=54de5e83b999a7e2e0010aca7f2e486fCAS |

[9]  M. Hussain, S. Ihm, Stud. Surf. Sci. Catal. 2007, 170, 1368.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) G. S. He, L. B. Sun, X. L. Song, X. Q. Liu, Y. Yin, Y. C. Wang, Energy Fuels 2011, 25, 3506.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlSnu7c%3D&md5=2a6d5a26f3403856bee8517d1b9bc569CAS |
      (b) S. Y. Yu, X. D. Wang, D. Z. Wu, Energy Fuels 2014, 28, 3519.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. R. Bagheri, R. G. Murray, C. M. William, Energy Fuels 2012, 26, 5408.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M Behrouzi, P. F. Luckham, Energy Fuels 2008, 22, 1792.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. R. Gray, R. R. Tykwinski, J. M. Stryker, X. L. Tan, Energy Fuels 2011, 25, 3125.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) D. C. Wang, Sci. China Ser. B: Chem. 2007, 50, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFSns7s%3D&md5=b4476a8d8eed0f74bf1a11674663eee5CAS |
      (b) D. C. Wang, Sci. China Ser. B: Chem. 2009, 52, 2114.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) D. C. Wang, J. D. Liu, China Patent CN 101890383A 2010.

[12]  (a) M. E. Yazdani, B. H. Monjezi, M. Mokfi, H. Bozorgzdeh, A. Gil, M. Ghiaci, RSC Adv. 2015, 5, 40647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnt1Wmsbs%3D&md5=25de2fe6a45fed84caf0b0917f898474CAS |
      (b) W. Ding, D. C. Wang, D. Z. Zhao, M. Ke, Chin. J. Inorg. Chem. 2014, 30, 1345.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 1951, 73, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXjsVygsg%3D%3D&md5=9462b85186f9a9ba0f182bca5b45276dCAS |
      (b) M. Kruk, M. Jaroniec, A. Sayari, Langmuir 1997, 13, 6267.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. S. W. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  M. Sun, P. J. Kooyman, R. Prins, J. Catal. 2002, 206, 368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1yjtr8%3D&md5=d46a284dacf6cecc0cd7fbc2d4849f9bCAS |

[15]  L. L. Qu, W. P. Zhang, P. J. Kooyman, R. Prins, J. Catal. 2003, 215, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFeitbY%3D&md5=5ffeb0ad3f91733624ab305eee70267fCAS |

[16]  Y. E. Licea, S. L. Amaya, A. Echavarría, J. Bettini, J. G. Eon, L. A. Palacio, A. C. Faro, Catal. Sci. Technol. 2014, 4, 1227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1Ghs74%3D&md5=a4bac87e9912b12fc9070e4597a35beaCAS |

[17]  T. Usman, Y. Kubota, K. Araki, Y. Ishida, Okamoto, J. Catal. 2004, 227, 523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFGntb0%3D&md5=b8b51ce490d13a023480edf4f078741aCAS |

[18]  B. W. Wang, Z. Y. Hu, S. H. Liu, M. H. Jiang, Y. Q. Yao, Z. H. Li, X. B. Ma, RSC Adv. 2014, 4, 56174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslKls77E&md5=f29fe7a187c93c9b10f9963691c5fddeCAS |

[19]  Y. Okamoto, Y. Arima, K. Nakai, S. Umeno, N. Katada, H. Yoshida, T. Tanaka, M. Yamada, Y. Akai, K. Segawa, A. Nishijima, H. Matsumoto, M. Niwa, T. Uchijima, Appl. Catal. A 1998, 170, 315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVylsr8%3D&md5=616a7d5e612d7a6ee7109b94b00bb403CAS |

[20]  (a) X. B. Fan, F. Liu, S. Y. Yao, X. H. Deng, W. J. Zhou, Y. Kou, Chin. J. Catal. 2012, 33, 1027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFyqsbbK&md5=edfaad9d6b7e0047d5327be3aaf719e9CAS |
      (b) J. L. Pinilla, H. Purón, D. Torres, I. Suelves, M. Millan, Carbon 2015, 81, 574.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. B. Chen, M. Francoise, V. G. Jacob, H. Nie, D. D. Li, X. Y. Long, J. Catal. 2013, 304, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  V. C. Srivastava, RSC Adv. 2012, 2, 759.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) L. P. Lidia, Z. Valeriya, M. Alvaro, M. C. Ignacio, Catal. Today 2013, 250, 115.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. Lakiss, M. Rivallan, J.-M. Goupil, J. El Fallah, S. Mintova, Catal. Today 2011, 168, 112.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. V. Pashigreva, G. A. Bukhtiyarova, O. V. Klimov, Y. A. Chesalov, G. S. Litvak, A. S. Oskov, Catal. Today 2010, 149, 19.
         | Crossref | GoogleScholarGoogle Scholar |