Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Enhancement of Oxidation of Formic Acid in Acid Medium on Zirconia-Supported Phosphotungstate-Decorated Noble Metal (Pd, Pt) Nanoparticles

Iwona A. Rutkowska
+ Author Affiliations
- Author Affiliations

Faculty of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland. Email: ilinek@chem.uw.edu.pl

Australian Journal of Chemistry 69(4) 394-402 https://doi.org/10.1071/CH15721
Submitted: 12 November 2015  Accepted: 14 January 2016   Published: 11 February 2016

Abstract

Palladium and platinum nanoparticles have been modified at sub-monolayer level with Keggin-type phosphododecatungstate (by spontaneous adsorption of H3PW12O40) and considered as catalysts for the electrooxidation of formic acid in sulfuric acid electrolyte. The presence of phosphotungstate adsorbates has been confirmed using Fourier transform infrared spectroscopy (by reflectance). The enhancement effect (described in terms of the oxidation current increases) is even more pronounced when the catalytic centres have been supported on nanostructured ZrO2. In the case of Pd catalysts, a large population of hydroxyl groups and a high mobility of interfacial protons (on zirconia) seem to favour the direct oxidation path to CO2, whereas in the case of Pt-based systems, the enhancement effect is related to the oxidative removal of otherwise passivating CO adsorbates (indirect oxidation path). The role of polytungstate adsorbates on Pd or Pt nanoparticles relates to their ability to interact competitively with the CO adsorbates at noble metal catalytic sites (‘third-body’ effect).


References

[1]  U. B. Demirci, J. Power Sources 2007, 169, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFagsbk%3D&md5=dc23ea0ae0e4dc89642583cffa5793bfCAS |

[2]  X. Yu, P. G. Pickup, J. Power Sources 2008, 182, 124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVChsLg%3D&md5=13aba97dac4685320a8319233e426f75CAS |

[3]  C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, J. Power Sources 2002, 111, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslOju7Y%3D&md5=1407ad467dc81d42172eff0b3469d836CAS |

[4]  A. Capon, R. Parsons, J. Electroanal. Chem. 1973, 45, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXms1Whtw%3D%3D&md5=5c324ce276a983029265ffe31b972b48CAS |

[5]  E. Antolini, Energy Environ. Sci. 2009, 2, 915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFajtrY%3D&md5=18faf92d79ccf4d7820d22fcf3bf13a4CAS |

[6]  J. Jiang, A. Kucernak, J. Electroanal. Chem. 2002, 520, 64.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslyntbc%3D&md5=f2f1e4ddb937a33724a362894e5aa655CAS |

[7]  S. Park, Y. Xie, M. J. Weaver, Langmuir 2002, 18, 5792.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFOrt7w%3D&md5=863d102a283258e101efed2f96824d4cCAS |

[8]  J. D. Lovic, A. V. Tripkovic, S. Lj. Gojkovic, K. Dj. Popovic, D. V. Tripkovic, P. Olszewski, A. Kowal, J. Electroanal. Chem. 2005, 581, 294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFSmur4%3D&md5=e06207b9600f5a3b3ab6355fbed3a034CAS |

[9]  C. Rice, S. Ha, R. I. Masel, A. Wieckowski, J. Power Sources 2003, 115, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Cqs7s%3D&md5=7248f6cc7a579ee003f0a18479be63cbCAS |

[10]  Y. Zhou, J. Liu, J. Ye, Z. Zou, J. Ye, J. Gu, T. Yu, A. Yang, Electrochim. Acta 2010, 55, 5024.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVGrurk%3D&md5=5cf31bb3ecab75a68157d3639e6233c0CAS |

[11]  V. Grozovski, J. Solla-Gullón, V. C. Climent, E. Herrero, J. M. Feliu, J. Phys. Chem. C 2010, 114, 13802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Kltbk%3D&md5=652ecbf87370131e14a667a19fbfbde6CAS |

[12]  R. Larsen, J. Zakzeski, R. I. Masel, Electrochem. Solid-State Lett. 2005, 8, A291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVOqsL8%3D&md5=68cdb9574b18cac18cb29c8379f38a42CAS |

[13]  K. Brandt, M. Steinhausen, K. Wandelt, J. Electroanal. Chem. 2008, 616, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsV2gurg%3D&md5=516b7ab9ee701754d7aa5b3b439180d7CAS |

[14]  Z. H. Zhang, J. J. Ge, L. A. Ma, J. H. Liao, T. H. Lu, W. Xing, Fuel Cells 2009, 9, 114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFGqt7g%3D&md5=c2adc8b757b507bcf2a120e470471cc2CAS |

[15]  Y. Suo, I. M. Hsing, Electrochim. Acta 2011, 56, 2174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wju70%3D&md5=61a330e24963e440260a746d7479839bCAS |

[16]  Z. Bai, L. Yang, Y. Guo, Z. Zheng, C. Hu, P. Xu, Chem. Commun. 2011, 47, 1752.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WgsrY%3D&md5=f72ede8aeb51a4c5163652eff089c79aCAS |

[17]  Y. J. Huang, X. C. Zhou, J. H. Liao, C. P. Liu, T. H. Lu, W. Xing, Electrochem. Commun. 2008, 10, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1ant74%3D&md5=3292acfa9c3fad55afab9344a6e9ed61CAS |

[18]  B. K. Jena, S. C. Sahu, B. Satpati, R. K. Sahu, D. Behera, S. Mohanty, Chem. Commun. 2011, 47, 3796.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Snsrw%3D&md5=7fe1833859122cf4b963946f45c11e36CAS |

[19]  H. Q. Li, G. Q. Sun, Q. Jiang, M. Y. Zhu, S. G. Sun, Q. Xin, J. Power Sources 2007, 172, 641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2qsr3O&md5=70d5e4c6a5fc64048fc9db98c01efbfcCAS |

[20]  S. Zhang, Y. Shao, G. Yin, Y. Lin, J. Power Sources 2010, 195, 1103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OiurzE&md5=a20156411f0f2788225c238990b36aa4CAS |

[21]  N. Cheng, R. A. Webster, M. Pan, S. Mu, L. Rassaei, S. C. Tsang, F. Marken, Electrochim. Acta 2010, 55, 6601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVajtr%2FP&md5=e7916097a0a07d694552abc68ea3dca5CAS |

[22]  G. Lu, A. Crown, A. Wieckowski, J. Phys. Chem. B 1999, 103, 9700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFGgt7Y%3D&md5=7ea058d7786e506bcb126a87a9238162CAS |

[23]  X. Wang, J. Wang, Q. Zou, Y. Xia, Electrochim. Acta 2011, 56, 1646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Sqt7fK&md5=f1b4a6c7a1f1596b51abb4681778b812CAS |

[24]  L. Feng, Z. Cui, L. Yan, W. Xing, C. Liu, Electrochim. Acta 2011, 56, 2051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wjtb0%3D&md5=ec93c4f197aea578b18bafca7fbdb0fcCAS |

[25]  Q. Yi, W. Huang, X. Liu, G. Xu, Z. Zhou, A. Chen, J. Electroanal. Chem. 2008, 619–620, 197.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  L. Feng, J. Yang, Y. Hu, J. Zhu, C. Liu, W. Xing, Int. J. Hydrogen Energy 2012, 37, 4812.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFSgu78%3D&md5=33d1880a6971ad63c05c2bb9a19e9f3fCAS |

[27]  J. Matos, A. Borodzinski, A. Mikolajczuk-Zychora, P. Kedzierzawski, B. Mierzwa, K. Juchniewicz, M. Mazurkiewicz, J. C. Hernadez-Garrido, Appl. Catal., B 2015, 163, 167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKhu7bM&md5=72d4ccbc7be297522c895e9c517cf711CAS |

[28]  W.-L. Qu, Z.-B. Wang, X.-L. Sui, D.-M. Gu, G.-P. Yin, Fuel Cells 2013, 13, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1Wkurc%3D&md5=e96b7ced6b510c7f6b8c13c9250e78c6CAS |

[29]  I. A. Rutkowska, D. Marks, C. Perruchot, M. Jouini, P. J. Kulesza, Colloids Surf., A 2013, 439, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslehtb0%3D&md5=328b28e77c86dd8a6ce775d586797e3bCAS |

[30]  M. Osawa, K.-I. Komatsu, G. Samjeské, T. Uchida, T. Ikeshoji, A. Cuesta, C. Gutiérrez, Angew. Chem., Int. Ed. 2011, 50, 1159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKnsr8%3D&md5=45288d89995a30f49f808cf6883c6252CAS |

[31]  H. Jeon, S. Uhm, B. Jeong, J. Lee, Phys. Chem. Chem. Phys. 2011, 13, 6192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12nsrY%3D&md5=142ae4190a481683cbcbbb74da39bb02CAS | 21359275PubMed |

[32]  Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Langmuir 2006, 22, 10399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKitb7J&md5=5fde8e18d83742b907f9b82b3373149fCAS | 17129008PubMed |

[33]  R. Chenitz, J.-P. Dodelet, J. Electrochem. Soc. 2010, 157, B1658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1agsLbL&md5=a80b964d253ed4c95fc70d40bdc59be8CAS |

[34]  C. Du, M. Chen, W. Wang, G. Yin, P. Shi, Electrochem. Commun. 2010, 12, 843.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlGns74%3D&md5=e3d8d2f3345f6d75196a99c9dab0d30eCAS |

[35]  P. J. Kulesza, I. S. Pieta, I. A. Rutkowska, A. Wadas, D. Marks, K. Klak, L. Stobinski, J. A. Cox, Electrochim. Acta 2013, 110, 474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVehurzJ&md5=84f01ca06935360b46023d554a651050CAS | 24443590PubMed |

[36]  J.-P. Tessonnier, S. Goubert-Renaudin, S. Alia, Y. Yan, M. A. Barteau, Langmuir 2013, 29, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSqtr7P&md5=ab86c1f29d8e706c5f020610a9416de7CAS | 23215040PubMed |

[37]  S. Liu, L. Xu, F. Li, B. Xu, Z. Sun, J. Mater. Chem. 2011, 21, 1946.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSqu78%3D&md5=025ae76564402c71e80ac774f21668dcCAS |

[38]  L. Zhang, Z. Li, X. Huang, L. Ye, S. Lin, J. Solid State Electrochem. 2014, 18, 2005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlGkt74%3D&md5=23786a77858fc2c1848fe7861db232e0CAS |

[39]  I. V. Kozhevnikov, Chem. Rev. 1998, 98, 171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVSgsw%3D%3D&md5=137244eead0795fba0125211228b0af1CAS | 11851502PubMed |

[40]  M. H. Seo, S. M. Choi, H. J. Kim, J. H. Kim, B. K. Cho, W. B. Kim, J. Power Sources 2008, 179, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFKqsr4%3D&md5=80fc736e465d279812b63869a3c5f2bcCAS |

[41]  Z. M. Cui, W. Xing, C. P. Liu, D. Tian, H. Zhang, J. Power Sources 2010, 195, 1619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrtbrF&md5=6912c78582d67537538889da393d812dCAS |

[42]  T. Maiyalagan, Int. J. Hydrogen Energy 2009, 34, 2874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslektrw%3D&md5=5d09167b768c692b852d12739c1980fdCAS |

[43]  P. J. Kulesza, M. Chojak, K. Karnicka, K. Miecznikowski, B. Palys, A. Lewera, A. Wieckowski, Chem. Mater. 2004, 16, 4128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVaitLY%3D&md5=06826623c7012e366383f4de98498670CAS |

[44]  R. Wlodarczyk, M. Chojak, K. Miecznikowski, A. Kolary, P. J. Kulesza, R. Marassi, J. Power Sources 2006, 159, 802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovF2rsb4%3D&md5=bf8d3ed3feaae7521f51729d32d7b208CAS |

[45]  R. Wlodarczyk, A. Kolary-Zurowska, R. Marassi, M. Chojak, P. J. Kulesza, Electrochim. Acta 2007, 52, 3958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlGnsbk%3D&md5=9e9a5d3afc9600b0251d03dd66a3e40fCAS |

[46]  D. Wang, S. Lu, P. J. Kulesza, C. M. Li, R. De Marco, S. P. Jiang, Phys. Chem. Chem. Phys. 2011, 13, 4400.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1yksrk%3D&md5=89887e86b06d5466af50c1ac9db9d97eCAS | 21249246PubMed |

[47]  Z. Cui, P. J. Kulesza, C. M. Li, W. Xing, S. P. Jiang, Int. J. Hydrogen Energy 2011, 36, 8508.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvF2rsLo%3D&md5=0e16f7672bd6ae3797129f79f536f0b3CAS |

[48]  A. Ma, X. Zhang, Z. Li, X. Wang, L. Ye, S. Lin, J. Electrochem. Soc. 2014, 161, F1224.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  X. Zhao, J. Zhu, L. Liang, C. Liu, J. Liao, W. Xing, J. Power Sources 2012, 210, 392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFymsbw%3D&md5=85e0d251ce39b8155ae397237664091cCAS |

[50]  W. Tze, M. I. Borzenka, G. A. Tsirlina, O. A. Petrii, Russ. J. Electrochem. 2002, 38, 1380.

[51]  I. A. Rutkowska, P. J. Kulesza, Funct. Mater. Lett. 2014, 07, 1440005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFansLjF&md5=a054d3b6f92c33b0e6c15dad927cc972CAS |

[52]  I. A. Rutkowska, S. Zoladek, P. J. Kulesza, Electrochim. Acta 2015, 162, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOntb7L&md5=18de92afa7a5bc5d9b4ec655ad98df51CAS |

[53]  I. A. Rutkowska, M. D. Koster, G. J. Blanchard, P. J. Kulesza, J. Power Sources 2014, 272, 681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCnsrvN&md5=9ddfb99d7577427a274a4c862301621cCAS |

[54]  I. A. Rutkowska, M. D. Koster, G. J. Blanchard, P. J. Kulesza, ECS Trans. 2014, 61, 57.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  R. Pattabiraman, Appl. Catal., A 1997, 153, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFKgtrc%3D&md5=48020c8cb5c9fb732776f431a01ac72aCAS |

[56]  D. Cao, L. Sun, G. Wang, Y. Lv, M. Zhang, J. Electroanal. Chem. 2008, 621, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaju7zO&md5=a5dbf29a387b291751fcf820f486856fCAS |

[57]  M. Chojak, A. Kolary-Zurowska, R. Wlodarczyk, K. Miecznikowski, K. Karnicka, B. Palys, R. Marassi, P. J. Kulesza, Electrochim. Acta 2007, 52, 5574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks12hsbw%3D&md5=2ada33b6f6d312b71193c2cbb298e7f0CAS |

[58]  S. Dong, M. Liu, J. Electroanal. Chem. 1994, 372, 95.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsVeru7w%3D&md5=99c5bb0871e2f95596c1153ec363339dCAS |

[59]  F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 4th edn 1980 (Wiley: New York, NY).

[60]  S. Uhm, H. J. Lee, J. Lee, Phys. Chem. Chem. Phys. 2009, 11, 9326.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kju7bE&md5=2bc92a104b2902b604f3717ece1e9ddcCAS | 19830313PubMed |

[61]  M. J. Llorca, E. Herrero, J. M. Feliu, A. Aldaz, J. Electroanal. Chem. 1994, 373, 217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFGkt7Y%3D&md5=181feef54541d398fd5be2a208cde3abCAS |

[62]  L.-L. Yan, Q.-N. Jiang, D.-Y. Liu, Y. Zhong, F.-P. Wen, X.-C. Deng, Q.-L. Zhong, B. Ren, Z.-Q. Tian, Acta Phys.-Chim. Sin. 2010, 26, 2337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CmsrbM&md5=8725015012b5ef994bf5e4d07835822bCAS |