Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Solvothermal Synthesis of Single-Crystal Magnetite Hollow Sub-Microspheres: A Novel Formation Mechanism and Magnetic Properties

Gongqin Yan A B , Guanlin Zhao A and Fei He A
+ Author Affiliations
- Author Affiliations

A School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China.

B Corresponding author. Email: yangongqin@qq.com

Australian Journal of Chemistry 69(7) 798-804 https://doi.org/10.1071/CH15662
Submitted: 20 October 2015  Accepted: 24 January 2016   Published: 11 February 2016

Abstract

In this paper, single-crystal magnetite hollow sub-microspheres with a narrow diameter distribution are synthesized through a simple solvothermal process in ethylene glycol in the presence of urea and a small amount of water. The determining role of water in the solvothermal synthesis is studied. It is found that a small amount of water is crucial for the formation of the magnetite hollow spheres. A novel formation mechanism of the magnetite hollow spheres is proposed based on the bubble-assisted Ostwald ripening. It is believed that the appropriate amount of CO2 gas bubbles produced in situ by urea hydrolysis is crucial for the formation of hollow spheres. Because of the existence of gas microbubbles, magnetite solid spheres with a loose core and compact shell form, which is the key factor for the following inside-out Ostwald ripening and the formation of the hollow spheres. Thus, by simple changing of the water dosage, magnetite hollow spheres with different diameters and shell thicknesses are obtained controllably. The magnetic properties of the obtained magnetite hollow spheres are studied. It is found that the saturation magnetization of the magnetite hollow sub-microspheres decreases with the increasing shell thickness, whereas the coercivity and remanent magnetization increase with increasing shell thickness.


References

[1]  H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong, S. Jon, J. Am. Chem. Soc. 2006, 128, 7383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Ogurc%3D&md5=c34576b2af87512bc6d3af8abe837ba6CAS | 16734494PubMed |

[2]  S. Sundar, R. Mariappan, S. Piraman, Powder Technol. 2014, 266, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1GhtLrM&md5=ff5fb4e211676b064676030106da1edeCAS |

[3]  Y. Soshnikova, S. Roman, N. Chebotareva, O. Baum, M. Obrezkova, R. Gillis, S. Harding, E. Sobol, V. Lunin, J. Nanopart. Res. 2013, 15, 2092.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. Q. Yan, J. G. Guan, W. Wang, Acta Phys. Chim. Sin. 2007, 23, 1958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksV2k&md5=68a874cb49e4cc6f1481a1bb072945deCAS |

[5]  X. Zhou, G. Z. Zhao, Y. Q. Liu, Mater. Res. Bull. 2014, 59, 358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlSqt7nL&md5=bc1fee319be11d60daeaffc4fe68cfacCAS |

[6]  D. T. Nguyen, K.-S. Kim, AIChE J. 2013, 59, 3594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFOjur0%3D&md5=69431f981f8bb246a7568fc663b691cbCAS |

[7]  P. Hu, L. J. Yu, A. H. Zuo, C. Y. Guo, F. L. Yuan, J. Phys. Chem. C 2009, 113, 900.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFyl&md5=2e5459b82eabdf3408fd6f5e1b4d8b21CAS |

[8]  B. P. Jia, L. Gao, J. Phys. Chem. C 2008, 112, 666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOnt7fP&md5=2c3062e51a4488016b03fbb775e32684CAS |

[9]  L. P. Zhu, H. M. Xiao, W. D. Zhang, G. Yang, S. Y. Fu, Cryst. Growth Des. 2008, 8, 957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvV2mtrk%3D&md5=b45143fbb9c26ab2686545a87094513eCAS |

[10]  X. Y. Chen, Z. J. Zhang, X. X. Li, C. W. Shi, Chem. Phys. Lett. 2006, 422, 294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Wrt7Y%3D&md5=12d18c2f737c1252e7c413820f3f3f08CAS |

[11]  N. N. Guan, Y. T. Wang, D. J. Sun, J. Xu, Nanotechnology 2009, 20, 105603.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Y. J. Zhang, S. W. Or, Z. D. Zhang, J. Nanosci. Nanotechnol. 2014, 14, 4664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltVajsrc%3D&md5=2575d3c4704a7c4bb1223070d1b95bd6CAS |

[13]  H. Deng, X. L. Li, Q. Peng, X. Wang, J. P. Chen, Y. D. Li, Angew. Chem., Int. Ed. 2005, 44, 2782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1ChtLs%3D&md5=ee51ae25102e2f4870e329ea1605eb1aCAS |

[14]  S. W. Cao, Y. J. Zhu, J. Chang, New J. Chem. 2008, 32, 1526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFems77O&md5=224f44ee7f90d2b585e0a12c1f5ca437CAS |

[15]  W. Ostwald, Lehrbuch der Allgemeinen Chemie Vol. 2, Part 1 1896 (Engelmann: Leipzig).

[16]  H. G. Yang, H. C. Zeng, J. Phys. Chem. B 2004, 108, 3492.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVKrsrs%3D&md5=a08406c0d9a1f958cae62d12c16f9a81CAS |

[17]  Y. Xie, J. X. Huang, B. Li, Y. Liu, Y. T. Qian, Adv. Mater. 2000, 12, 1523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFSmtLs%3D&md5=9c3d4b4a63b6484ce12dc197d638c6aaCAS |

[18]  X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, L. A. Archer, Adv. Mater. 2006, 18, 2325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSlurnE&md5=b4dd7e64043f8d4fb6e01c18e6f28c5eCAS |

[19]  L. L. Li, Y. Chu, Y. Liu, L. H. Dong, J. Phys. Chem. C 2007, 111, 2123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFShtA%3D%3D&md5=36debae4adbf68fde6737e94801e0be0CAS |

[20]  X. W. Lou, L. A. Archer, Z. C. Yang, Adv. Mater. 2008, 20, 3987.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVartbnK&md5=f44a4ad97c72c1172e82b608647b71c9CAS |

[21]  A. P. Alivisatos, Science 2000, 289, 736.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslOru7g%3D&md5=5e1c25001a9fc6ff908ec59629fb46cdCAS | 10950719PubMed |

[22]  J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert, R. L. Penn, Science 2000, 289, 751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslyjsrc%3D&md5=16d60301bdd3c13d70cfcac5f3a2a7d9CAS | 10926531PubMed |

[23]  P. H. Refait, M. Abdelmoula, J. M. R. GĂ©nin, Corros. Sci. 1998, 40, 1547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlKmurk%3D&md5=3751143c6f8d7dd4c1ce45ce272bd35fCAS |

[24]  Y. L. Wang, X. C. Jiang, Y. N. Xia, J. Am. Chem. Soc. 2003, 125, 16176.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFOkur8%3D&md5=aa184e9041bb0cde3c8433c12cb673d0CAS |

[25]  J. Y. Chen, T. Herricks, M. Geissler, Y. N. Xia, J. Am. Chem. Soc. 2004, 126, 10854.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1OltLk%3D&md5=3a18e88b36c41f70809d6fc294ed9f3cCAS |

[26]  S. E. Skrabalak, B. J. Wiley, M. Kim, E. V. Formo, Y. N. Xia, Nano Lett. 2008, 8, 2077.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKht7k%3D&md5=71d4d5b360e2d83c3199a9d790efb428CAS | 18507481PubMed |

[27]  H. W. Hou, Q. Peng, S. Y. Zhang, Q. X. Guo, Y. Xie, Eur. J. Inorg. Chem. 2005, 2625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtF2ltrg%3D&md5=badd514c21c4d75f7984d387952cde25CAS |

[28]  Q. Peng, Y. J. Dong, Y. D. Li, Angew. Chem., Int. Ed. 2003, 42, 3027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGksb8%3D&md5=b388b8d5062b97c77e87df18cac7d719CAS |

[29]  X. W. Lou, L. A. Archer, Z. C. Yang, Adv. Mater. 2008, 20, 3987.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVartbnK&md5=f44a4ad97c72c1172e82b608647b71c9CAS |

[30]  X. Wang, F. L. Yuan, P. Hu, L. J. Yu, L. Y. Bai, J. Phys. Chem. C 2008, 112, 8773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVOgtL4%3D&md5=b85e824284ebec7ef1329d77f15e4f52CAS |

[31]  Y. L. Hou, H. Kondoh, T. Ohta, Chem. Mater. 2005, 17, 3994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsVeltro%3D&md5=d4193c88380a93be30ff25cd1b768c40CAS |

[32]  T. Z. Yang, C. M. Shen, Z. A. Li, H. R. Zhang, C. W. Xiao, S. T. Chen, Z. C. Xu, D. X. Shi, J. Q. Li, H. J. Gao, J. Phys. Chem. B 2005, 109, 23233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WisLjL&md5=c1f116d7b83790b7b0469d46297ba094CAS |

[33]  J. Lu, X. L. Jiao, D. R. Chen, W. Li, J. Phys. Chem. C 2009, 113, 4012.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFSmsrc%3D&md5=efc1634ef006e5854e5ccd400bd34608CAS |

[34]  Q. L. Ye, Y. Kozuka, H. Yoshiawa, K. Awaga, S. Bandow, S. Iijima, Phys. Rev. B 2007, 75, 224404.
         | Crossref | GoogleScholarGoogle Scholar |