An Injectable Double-Network Hydrogel for Cell Encapsulation
Pei Lin Chee A , Lakshmi Lakshmanan A , Shan Jiang A B , Hongye Ye A , Dan Kai A and Xian Jun Loh A C D EA Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.
B College of Chemistry, Jilin University, Changchun 130012, China.
C Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore.
D Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751, Republic of Singapore.
E Corresponding author. Email: lohxj@imre.a-star.edu.sg
Australian Journal of Chemistry 69(4) 388-393 https://doi.org/10.1071/CH15659
Submitted: 19 October 2015 Accepted: 13 November 2015 Published: 27 November 2015
Abstract
Further developing on the technique originally intended for the purpose of forming tough hydrogels, we showed in this study that the double-network system can also be used to synthesize an injectable gel. The gel was made up of poly(ethylene glycol) methyl ether methacrylate, sodium alginic acid, and calcium chloride, and two networks, consisting of ionic and covalent networks, were found to co-exist in the gel. Additionally, the rheology studies showed that the mechanical properties of the gel only deteriorated under high strain, demonstrating the robustness of the gel upon injection. The results of a cell cytotoxicity test and a preliminary cell encapsulation study were promising, showing good cell compatibility and thus suggesting that the hydrogels could potentially be used for cell delivery.
References
[1] A. S. Daar, H. L. Greenwood, J. Tissue Eng. Regener. Med. 2007, 1, 179.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Ghur4%3D&md5=6d5504e9e0b605cc0e619ddfa2d2e66fCAS |
[2] S. M. Frisch, H. Francis, J. Cell Biol. 1994, 124, 619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtlSrsLo%3D&md5=df82120ccf174cdc84b986aaeec4ae2bCAS | 8106557PubMed |
[3] J. Grossmann, Apoptosis 2002, 7, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVaitb4%3D&md5=da1462e02e0fd2ecdb5530b585deca4dCAS | 11997669PubMed |
[4] P. M. Grossman, Z. Han, M. Palasis, J. J. Barry, R. J. Lederman, Cathet. Cardiovasc. Intervent. 2002, 55, 392.
| Crossref | GoogleScholarGoogle Scholar |
[5] E. T. Roche, C. L. Hastings, S. A. Lewin, D. E. Shvartsman, Y. Brudno, N. V. Vasilyev, F. J. O’Brien, C. J. Walsh, G. P. Duffy, D. J. Mooney, Biomaterials 2014, 35, 6850.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosFegtbY%3D&md5=8c0d2a5565cce2904b5f9c9e28c30827CAS | 24862441PubMed |
[6] Y. Li, W. Liu, F. Liu, Y. Zeng, S. Zuo, S. Feng, C. Qi, B. Wang, X. Yan, A. Khademhosseini, J. Bai, Y. Du, Proc. Natl. Acad. Sci. USA 2014, 111, 13511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVGntb%2FN&md5=d5674cb093213f896a81a816f71f82e1CAS | 25197069PubMed |
[7] (a) I. M. El-Sherbiny, M. H. Yacoub, Global Cardiol. Sci. Pract. 2013, 3, 316.
(b) P. Thoniyot, M. J. Tan, A. A. Karim, D. J. Young, X. J. Loh, Adv. Sci. 2015, 2, 1.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. W. Low, P. L. Chee, D. Kai, X. J. Loh, RSC Adv. 2015, 5, 57678.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. J. Loh, A. Abdul Karim, C. Owh, J. Mater. Chem. B 2015, 3, 7641.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. Y. Ye, X. J. Loh, Aust. J. Chem. 2013, 66, 997.
| Crossref | GoogleScholarGoogle Scholar |
[8] P. N. Patel, A. S. Gobin, J. L. West, C. W. Patrick, Tissue Eng. 2005, 11, 1498.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKlsL%2FN&md5=6269a36cf7907e08bd87e11d7fdea187CAS | 16259604PubMed |
[9] G. D. Nicodemus, S. J. Bryant, Tissue Eng., Part B 2008, 14, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFWnu7k%3D&md5=e6397f5b5818897f825ede037b5658dbCAS |
[10] J. A. Burdick, W. L. Murphy, Nat. Commun. 2012, 3, 1269.
| Crossref | GoogleScholarGoogle Scholar | 23232399PubMed |
[11] S. P. Zustiak, J. B. Leach, Biomacromolecules 2010, 11, 1348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWlt7g%3D&md5=e2e76576a377ca7b91fd23d88e6a53b1CAS | 20355705PubMed |
[12] (a) W. Zhao, X. Jin, Y. Cong, Y. Liu, J. Fu, J. Chem. Technol. Biotechnol. 2013, 88, 327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOisrnJ&md5=7c7ca08c82f413d77c808a19b24e052dCAS |
(b) Z. Li, X. J. Loh, Chem. Soc. Rev. 2015, 44, 2865.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. J. Loh, Mater. Horiz. 2014, 1, 185.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Ye, C. Owh, X. J. Loh, RSC Adv. 2015, 5, 48720.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) P. Priyadarshani, Y. Li, S. Y. Yang, L. Yao, J. Biomed. Mater. Res., Part A 2015, in press.
| Crossref | GoogleScholarGoogle Scholar |
(b) X. J. Loh, H. X. Gan, H. Wang, S. J. E. Tan, K. Y. Neoh, S. S. J. Tan, H. F. Diong, J. J. Kim, W. L. S. Lee, X. T. Fang, O. Cally, S. S. Yap, K. P. Liong, K. H. Chan, J. Appl. Polym. Sci. 2014, 131, 39924.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q. Q. Dou, S. S. Liow, E. Y. Ye, R. Lakshminarayanan, X. J. Loh, Adv. Healthcare Mater. 2014, 3, 977.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. Ye, G. R. Deen, X. J. Loh, J. Mol. Eng. Mater. 2013, 01, 1330002.
| Crossref | GoogleScholarGoogle Scholar |
(e) X. J. Loh, B. J. H. Yee, F. S. Chia, J. Biomed. Mater. Res. A 2012, 100A, 2686.
| Crossref | GoogleScholarGoogle Scholar |
(f) X. J. Loh, W. Guerin, S. M. Guillaume, J. Mater. Chem. 2012, 22, 21249.
| Crossref | GoogleScholarGoogle Scholar |
(g) V. P. N. Nguyen, N. Y. Kuo, X. J. Loh, Soft Matter 2011, 7, 2150.
| Crossref | GoogleScholarGoogle Scholar |
(h) X. J. Loh, L. W. I. Cheng, J. Li, Macromol. Symp. 2010, 296, 161.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. Tan, K. G. Marra, Materials 2010, 3, 1746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1yhu78%3D&md5=d3b2e231e515815b3b3c7b9f3164ff3fCAS |
[15] K. H. Bae, L. Wang, M. Kurisawa, J. Mater. Chem. B 2013, 1, 5371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFWnsbfF&md5=aedd07b70c502be2fba7124dc1b40642CAS |
[16] E. J. Yun, B. Yon, M. K. Joo, B. Jeong, Biomacromolecules 2012, 13, 1106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlGlsb0%3D&md5=985d8a147a4e76158744dd07ca669e8eCAS | 22394182PubMed |
[17] J. Li, W. R. K. Illeperuma, Z. Suo, J. J. Vlassak, ACS Macro Lett. 2014, 3, 520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFCrtrs%3D&md5=cb4d6aea3bdea90b99880054103644d2CAS |
[18] J. Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGnt73N&md5=11548f3b9a9203c617d1e96bee1e366cCAS | 22955625PubMed |
[19] J. P. Gong, Soft Matter 2010, 6, 2583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntF2gur4%3D&md5=fa70fdc4122e5816b4af210a25632db5CAS |
[20] M. A. Haque, T. Kurokawa, J. P. Gong, Polymer 2012, 53, 1805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVakuro%3D&md5=60f1ef771dc24492c972d06a55ed45a8CAS |
[21] Y. H. Na, Korea-Aust. Rheol. J. 2013, 25, 185.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFemu7k%3D&md5=c18b8adb7009b498926db3941a672f8aCAS |
[23] S. Selvam, M. V. Pithapuram, S. P. Victor, J. Muthu, Colloids Surf., B 2015, 126, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFygsLrI&md5=317a449074d9f0c227d656bece758124CAS |
[24] F. Li, Y. Liu, Y. Ding, Q. Xie, Soft Matter 2014, 10, 2292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjslGksrk%3D&md5=c5a6bbbd0a01f7109092f18a95ada957CAS | 24795961PubMed |
[25] W. Wu, H. Chen, F. Shan, J. Zhou, X. Sun, L. Zhang, T. Gong, Mol. Pharmaceutics 2014, 11, 3378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtFWltbY%3D&md5=7622e2ca2e2bc5d55806099863de0629CAS |
[26] L. E. Jabarian, M. R. Rouini, F. Atyabi, A. Foroumadi, S. M. Nassiri, R. Dinarvand, Eur. J. Pharm. Sci. 2013, 48, 87.
| Crossref | GoogleScholarGoogle Scholar |
[27] T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayamaa, Y. Niidome, J. Controlled Release 2006, 114, 343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Omtbk%3D&md5=17228b6cea3372361e96770561a80da0CAS |
[28] D. Hutanu, M. D. Frishberg, L. Guo, C. C. Darie, Mod. Chem. Appl. 2014, 2, 132.
| Crossref | GoogleScholarGoogle Scholar |
[29] A. Song, A. A. Rane, K. L. Christman, Acta Biomater. 2012, 8, 41.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjtLzN&md5=9f978f6bc9b6af01a309a096668fd7a0CAS | 22023748PubMed |
[30] H. Shih, C. C. Lin, Biomacromolecules 2015, 16, 1915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslKrs7Y%3D&md5=7d1220bdab4fbb4903f6679dc6961c45CAS | 25996903PubMed |
[31] A. D. Shubin, T. J. Felong, D. Graunke, C. E. Ovitt, D. S. Benoit, Tissue Eng., Part A 2015, 21, 1733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpt1KmtLg%3D&md5=4d64d66ce0f35f0305dc8795081afcf5CAS |
[32] J. Zhu, Biomaterials 2010, 31, 4639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksV2ru7o%3D&md5=7e364f1331d28114e398e313123c4f16CAS | 20303169PubMed |
[33] N. Hunt, L. Grover, in Corneal Regenerative Medicine (Eds B. Wright, C. J. Connon) 2013, Vol. 1014, pp. 201–210 (Springer: New York, NY).
[34] C. K. Kuo, P. X. Ma, Biomaterials 2001, 22, 511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlylug%3D%3D&md5=cf773ec37b310e99aabc524451cbf5e4CAS | 11219714PubMed |
[35] A. D. Augst, H. J. Kong, D. J. Mooney, Macromol. Biosci. 2006, 6, 623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWhu78%3D&md5=ba5eaeeec8b6b229fccd6bdc11aab5c0CAS | 16881042PubMed |
[36] K. Baysal, A. Z. Aroguz, Z. Adiguzel, B. M. Baysal, Int. J. Biol. Macromol. 2013, 59, 342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFOhsLY%3D&md5=f37021879a0c3774db7ed4cd6adf4273CAS | 23664939PubMed |
[37] B. A. Aguado, W. Mulyasasmita, J. Su, K. J. Lampe, S. C. Heilshorn, Tissue Eng., Part A 2012, 18, 806.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVSmsr4%3D&md5=988f136eb44113e9e149939c3bf38d9eCAS |
[38] I. Mironi-Harpaz, D. Y. Wang, S. Venkatraman, D. Seliktar, Acta Biomater. 2012, 8, 1838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks12htbc%3D&md5=6ca13ef59d8103d7b61b8e9b770caf18CAS | 22285429PubMed |
[39] J. L. Ifkovits, J. A. Burdick, Tissue Eng. 2007, 13, 2369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSntbvF&md5=919d1562e920366d0e50ba85c758d3e4CAS | 17658993PubMed |
[40] C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, J. H. Elisseeff, Biomaterials 2005, 26, 1211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1OltLk%3D&md5=1a2cd34929d88b8f37d4ef9c27bbe917CAS | 15475050PubMed |