Synthesis and Photocleavage of Quinoline Methyl Ethers: A Mild and Efficient Method for the Selective Protection and Deprotection of the Alcohol Functionality*
Anthony A. Provatas A C , Gary A. Epling B and James D. Stuart AA Center for Environmental Sciences and Engineering, University of Connecticut, Building 4 Annex, 3107 Horsebarn Hill Road, Unit 4210 Storrs, CT 06269-4210, USA.
B Deceased (9 September 2001). Formerly of University of Connecticut, USA.
C Corresponding author. Email: anthony.provatas@uconn.edu
Australian Journal of Chemistry 69(7) 763-769 https://doi.org/10.1071/CH15627
Submitted: 7 October 2015 Accepted: 9 December 2015 Published: 18 January 2016
Abstract
The synthesis and photocleavage of quinolinyl methyl ether-protected alcohols is reported in this study. A variety of quinoline methyl chlorides were synthesized, and protection of the various alcohols was performed via a substitution reaction in the presence of a strong base. Photocleavage of the quinolinyl methyl ether moiety proceeded under visible light with the formation of the charged quinolinyl radical intermediate through a single-electron transfer in the presence of a photosensitizer dye leading to the deprotected alcohol in excellent yields. The utility of triethylamine as a sacrificial reductant and d-sorbitol as a radical scavenger were also investigated in this study.
References
[1] T. W. Greene, Organic Synthesis 1981 (John Wiley and Sons: New York, NY).[2] L. Jobron, O. Hindsgaul, J. Am. Chem. Soc. 1999, 121, 5835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVKmsL8%3D&md5=c5e65316d39fd527de32a71ed2d31705CAS |
[3] P. R. Brooks, M. C. Wirtz, M. G. Vetelino, D. M. Rescek, G. F. Woodworth, B. P. Morgan, J. W. Coe, J. Org. Chem. 1999, 64, 9719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFOrt7g%3D&md5=2013e775c6f89f676183408188c7e9feCAS |
[4] C. J. Moody, M. R. Pitts, Synlett 1999, 1999, 1575.
| Crossref | GoogleScholarGoogle Scholar |
[5] N. Ikemoto, S. L. Schreiber, J. Am. Chem. Soc. 1992, 114, 2524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsFahtbs%3D&md5=842700c766d5c275412f7a4e645f20d1CAS |
[6] J. P. Kutney, N. Abdurahman, C. Gletsos, P. Le Quesne, E. Piers, I. Vlattas, J. Am. Chem. Soc. 1970, 92, 1727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhtVSqtLo%3D&md5=8c63381c047f450dca0e69171a60acd1CAS | 5418453PubMed |
[7] V. G. Mairanovsky, Angew. Chem., Int. Ed. Engl. 1976, 15, 281.
| Crossref | GoogleScholarGoogle Scholar |
[8] E. A. Mayeda, L. L. Miller, J. F. Wolf, J. Am. Chem. Soc. 1972, 94, 6812.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlsFWht7Y%3D&md5=3ea1be12b8948c11f3d34364e5d1dfceCAS |
[9] G. Pandey, A. Krishna, Synth. Commun. 1988, 18, 2309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktlymuro%3D&md5=4f6ccb3f62509989e1b754508637d5ddCAS |
[10] R. W. Binkley, D. G. Hehemann, J. Org. Chem. 1990, 55, 378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjs1ejsA%3D%3D&md5=58a90773581b101d35cef197008a8494CAS |
[11] K. Yamada, H. Fujita, M. Kunishima, Org. Lett. 2012, 14, 5026.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlygtLfN&md5=232789764d75058a25a951bd28f92087CAS | 22994426PubMed |
[12] K. W. C. Poon, G. B. Dudley, J. Org. Chem. 2006, 71, 3923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1yiu7c%3D&md5=68e4bff78def77ae689fb5d25f557b01CAS |
[13] M. Schelhaas, H. Waldmann, Angew. Chem., Int. Ed. Engl. 1996, 35, 2056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Clt7c%3D&md5=b0bbc9d9b0658aab7d9885b8284b77bfCAS |
[14] A. Maercker, Angew. Chem., Int. Ed. Engl. 1987, 26, 972.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. Fedorov, A. A. Toutov, N. A. Swisher, R. H. Grubbs, Chem. Sci. 2013, 4, 1640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyms7w%3D&md5=5c355edcc33cf0bca4aadc5f8bfdabd2CAS |
[16] G. A. Epling, A. A. Provatas, Chem. Commun. 2002, 1036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFKgtrk%3D&md5=27e3390f717fb22929776a555c2e118bCAS |
[17] F. R. Stermitz, C. C. Wei, C. M. O’Donnell, J. Am. Chem. Soc. 1970, 92, 2745.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkt1Clsbc%3D&md5=aeb59f9295b52cf1a9c9d474e52ad5d2CAS |
[18] G. A. Epling, K. Y. Lin, A. Kumar, J. Heterocycl. Chem. 1988, 25, 425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXntlyh&md5=2fda38ee3c43fef95fe4388ffc2ef595CAS |
[19] G. A. Epling, N. K. Ayengar, E. F. McCarthy, Tetrahedron Lett. 1977, 18, 517.
| Crossref | GoogleScholarGoogle Scholar |
[20] A. A. Provatas, G. A. Epling, J. D. Stuart, A. Yeudakimau, Aust. J. Chem. 2015, 68, 500.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVGqtb4%3D&md5=c55f60c62ed2cf39d96caf81ace9f1baCAS |
[21] J. M. R. Narayanam, J. R. A. Stephenson, Chem. Soc. Rev. 2011, 40, 102.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKju7bK&md5=f8615784d67a31f813ffe5e9c38891bdCAS |
[22] P. V. Pham, D. A. Nagib, D. W. C. MacMillan, Angew. Chem., Int. Ed. 2011, 50, 6119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsValtLg%3D&md5=260bebc6d4ba7a2f2455b1f2b4d59c75CAS |