Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Photocleavage of Quinoline Methyl Ethers: A Mild and Efficient Method for the Selective Protection and Deprotection of the Alcohol Functionality*

Anthony A. Provatas A C , Gary A. Epling B and James D. Stuart A
+ Author Affiliations
- Author Affiliations

A Center for Environmental Sciences and Engineering, University of Connecticut, Building 4 Annex, 3107 Horsebarn Hill Road, Unit 4210 Storrs, CT 06269-4210, USA.

B Deceased (9 September 2001). Formerly of University of Connecticut, USA.

C Corresponding author. Email: anthony.provatas@uconn.edu

Australian Journal of Chemistry 69(7) 763-769 https://doi.org/10.1071/CH15627
Submitted: 7 October 2015  Accepted: 9 December 2015   Published: 18 January 2016

Abstract

The synthesis and photocleavage of quinolinyl methyl ether-protected alcohols is reported in this study. A variety of quinoline methyl chlorides were synthesized, and protection of the various alcohols was performed via a substitution reaction in the presence of a strong base. Photocleavage of the quinolinyl methyl ether moiety proceeded under visible light with the formation of the charged quinolinyl radical intermediate through a single-electron transfer in the presence of a photosensitizer dye leading to the deprotected alcohol in excellent yields. The utility of triethylamine as a sacrificial reductant and d-sorbitol as a radical scavenger were also investigated in this study.


References

[1]  T. W. Greene, Organic Synthesis 1981 (John Wiley and Sons: New York, NY).

[2]  L. Jobron, O. Hindsgaul, J. Am. Chem. Soc. 1999, 121, 5835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVKmsL8%3D&md5=c5e65316d39fd527de32a71ed2d31705CAS |

[3]  P. R. Brooks, M. C. Wirtz, M. G. Vetelino, D. M. Rescek, G. F. Woodworth, B. P. Morgan, J. W. Coe, J. Org. Chem. 1999, 64, 9719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFOrt7g%3D&md5=2013e775c6f89f676183408188c7e9feCAS |

[4]  C. J. Moody, M. R. Pitts, Synlett 1999, 1999, 1575.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  N. Ikemoto, S. L. Schreiber, J. Am. Chem. Soc. 1992, 114, 2524.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsFahtbs%3D&md5=842700c766d5c275412f7a4e645f20d1CAS |

[6]  J. P. Kutney, N. Abdurahman, C. Gletsos, P. Le Quesne, E. Piers, I. Vlattas, J. Am. Chem. Soc. 1970, 92, 1727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhtVSqtLo%3D&md5=8c63381c047f450dca0e69171a60acd1CAS | 5418453PubMed |

[7]  V. G. Mairanovsky, Angew. Chem., Int. Ed. Engl. 1976, 15, 281.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  E. A. Mayeda, L. L. Miller, J. F. Wolf, J. Am. Chem. Soc. 1972, 94, 6812.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlsFWht7Y%3D&md5=3ea1be12b8948c11f3d34364e5d1dfceCAS |

[9]  G. Pandey, A. Krishna, Synth. Commun. 1988, 18, 2309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktlymuro%3D&md5=4f6ccb3f62509989e1b754508637d5ddCAS |

[10]  R. W. Binkley, D. G. Hehemann, J. Org. Chem. 1990, 55, 378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjs1ejsA%3D%3D&md5=58a90773581b101d35cef197008a8494CAS |

[11]  K. Yamada, H. Fujita, M. Kunishima, Org. Lett. 2012, 14, 5026.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlygtLfN&md5=232789764d75058a25a951bd28f92087CAS | 22994426PubMed |

[12]  K. W. C. Poon, G. B. Dudley, J. Org. Chem. 2006, 71, 3923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1yiu7c%3D&md5=68e4bff78def77ae689fb5d25f557b01CAS |

[13]  M. Schelhaas, H. Waldmann, Angew. Chem., Int. Ed. Engl. 1996, 35, 2056.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Clt7c%3D&md5=b0bbc9d9b0658aab7d9885b8284b77bfCAS |

[14]  A. Maercker, Angew. Chem., Int. Ed. Engl. 1987, 26, 972.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  A. Fedorov, A. A. Toutov, N. A. Swisher, R. H. Grubbs, Chem. Sci. 2013, 4, 1640.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyms7w%3D&md5=5c355edcc33cf0bca4aadc5f8bfdabd2CAS |

[16]  G. A. Epling, A. A. Provatas, Chem. Commun. 2002, 1036.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFKgtrk%3D&md5=27e3390f717fb22929776a555c2e118bCAS |

[17]  F. R. Stermitz, C. C. Wei, C. M. O’Donnell, J. Am. Chem. Soc. 1970, 92, 2745.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkt1Clsbc%3D&md5=aeb59f9295b52cf1a9c9d474e52ad5d2CAS |

[18]  G. A. Epling, K. Y. Lin, A. Kumar, J. Heterocycl. Chem. 1988, 25, 425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXntlyh&md5=2fda38ee3c43fef95fe4388ffc2ef595CAS |

[19]  G. A. Epling, N. K. Ayengar, E. F. McCarthy, Tetrahedron Lett. 1977, 18, 517.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A. A. Provatas, G. A. Epling, J. D. Stuart, A. Yeudakimau, Aust. J. Chem. 2015, 68, 500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVGqtb4%3D&md5=c55f60c62ed2cf39d96caf81ace9f1baCAS |

[21]  J. M. R. Narayanam, J. R. A. Stephenson, Chem. Soc. Rev. 2011, 40, 102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKju7bK&md5=f8615784d67a31f813ffe5e9c38891bdCAS |

[22]  P. V. Pham, D. A. Nagib, D. W. C. MacMillan, Angew. Chem., Int. Ed. 2011, 50, 6119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsValtLg%3D&md5=260bebc6d4ba7a2f2455b1f2b4d59c75CAS |