Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Zinc Oxide Nanoparticles-Immobilized Mesoporous Hollow Silica Spheres for Photodegradation of Sodium Dodecylbenzenesulfonate

Parisa Pourdayhimi A , Pei Wen Koh B , Mohamed Mohd Salleh B , Hadi Nur B and Siew Ling Lee B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

B Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific & Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

C Corresponding author: sllee@ibnusina.utm.my

Australian Journal of Chemistry 69(7) 790-797 https://doi.org/10.1071/CH15495
Submitted: 12 August 2015  Accepted: 18 January 2016   Published: 4 March 2016

Abstract

ZnO-Immobilized mesoporous hollow silica spheres (ZnO/xMHSS; x = 15, 30, 50 molar ratio of Zn/Si) were synthesized and examined as photocatalysts toward the degradation of sodium dodecylbenzenesulfonate (SDBS). The hollow structures of MHSS and ZnO-immobilized MHSS composite were evidenced by transmission electron microscopy analysis. X-ray diffraction results confirmed the presence of ZnO and a mesoporous structure in the synthesized materials. N2 adsorption–desorption analysis also depicted the formation of a mesoporous structure and the increased surface area for the ZnO/xMHSS materials. Fourier transform infrared spectroscopy analysis revealed the formation of Si–O–Zn bonds due to interaction between ZnO and MHSS. The photocatalytic testing results indicated that all the ZnO/xMHSS materials showed improved efficiencies of 10–21 % toward the photodegradation of SDBS when compared with bare ZnO. Among the prepared materials, ZnO/15MHSS was the best photocatalyst, which photodegraded 68 % SDBS after 1 h reaction. The kinetic study demonstrated that the photocatalytic reaction followed the second-order model.


References

[1]  K. Nakata, A. Fujishima, J. Photochem. Photobiol., C 2012, 13, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWqt78%3D&md5=2a3aa855314345d6e06c4746774c314aCAS |

[2]  M. L. Kahn, T. Cardinal, B. Bousquet, M. Monge, V. Jubera, B. Chaudret, ChemPhysChem 2006, 7, 2392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OnsrfN&md5=8153ddae8aa95bdee87e726b798ecacaCAS | 17051655PubMed |

[3]  V. Colvin, M. Schlamp, A. Alivisatos, Nature 1994, 370, 354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsVWgs7s%3D&md5=cc1f3dc1446ded541179add7bafc27aeCAS |

[4]  R. Wahab, I. H. Hwang, Y. S. Kim, H. S. Shin, Chem. Eng. J. 2011, 168, 359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGiu7Y%3D&md5=56a82e7b0931fddbb208079e35aec5f5CAS |

[5]  W. Cun, Z. Jincai, W. Xinming, M. Bixian, S. Guoying, P. Ping’an, F. Jiamo, Appl. Catal., B 2002, 39, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  P. W. Koh, L. Yuliati, H. O. Lintang, S. L. Lee, Aust. J. Chem. 2015, 68, 1129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFaisLzN&md5=7b4f40e18d88970c3441ff68ca374882CAS |

[7]  R. Saravanan, E. Thirumal, V. K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 2013, 177, 194.

[8]  C. Aprile, E. Gobechia, J. A. Martens, P. P. Pescarmona, Chem. Commun. 2010, 46, 7712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Omtr7E&md5=d99b2edb1f8c9dd18ba85916c07ad6f9CAS |

[9]  M. Elimelech, J. Gregory, X. Jia, Particle Deposition and Aggregation: Measurement, Modelling and Simulation 2013 (Butterworth-Heinemann: Oxford).

[10]  S. Sanchez-Munoz, D. Perez-Quintanilla, S. Gomez-Ruiz, Mater. Res. Bull. 2013, 48, 250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12ks7bM&md5=5b064185e5167ee56d2ec3467f17f09bCAS |

[11]  L. Jiang, L. Gao, Mater. Chem. Phys. 2005, 91, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1Cgur4%3D&md5=b970869216061ba140cbb50ad201f63eCAS |

[12]  S. L. Lee, H. Nur, H. Hamdan, Catal. Lett. 2009, 132, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVSgur4%3D&md5=4367d607cfb52b0c5dd46e1d6ac8adfaCAS |

[13]  Y. K. Ooi, L. Yuliati, S. L. Lee, Jurnal Teknologi 2014, 69, 81.

[14]  H.-L. Xia, F.-Q. Tang, J. Phys. Chem. B 2003, 107, 9175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Shs7k%3D&md5=549bdca3a5423c4137b752738ab6938bCAS |

[15]  H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, J. L. Kong, J. Mater. Chem. 2012, 22, 13159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVaht7k%3D&md5=7c6b4c69c3cf8421a8ede9d3cf0de745CAS |

[16]  Q. Lu, Z. Wang, J. Li, P. Wang, J. Li, Nanoscale Res. Lett. 2010, 5, 761.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFSmsrk%3D&md5=f6ff4e003e46215489f1ef0125f2fac8CAS | 20672132PubMed |

[17]  K. B. Babitha, V. Linsha, S. Anas, A. Peer Mohamed, M. Kiran, S. Ananthakumar, J. Environ. Chem. Eng. 2015, 3, 1337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtF2ls7fE&md5=ce0a5055d4339f331a216ee6d46f4c17CAS |

[18]  B. Jeong, D. H. Kim, E. J. Park, M.-G. Jeong, K.-D. Kim, H. O. Seo, Y. D. Kim, S. Uhm, Appl. Surf. Sci. 2014, 307, 468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFGjsrw%3D&md5=f08f05980e6ac1b8d3df813e4f4c1655CAS |

[19]  X. Song, L. Gao, J. Phys. Chem. C 2007, 111, 8180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1OgtL0%3D&md5=a48e710d81a60381bfc68932a3a3c4c7CAS |

[20]  T. Wang, W. Ma, J. Shangguan, W. Jiang, Q. Zhong, J. Solid State Chem. 2014, 215, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXoslyrurc%3D&md5=ad10488c0b11f3421778390225e0444bCAS |

[21]  F. Caruso, R. A. Caruso, H. Möhwald, Science 1998, 282, 1111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlaqs74%3D&md5=0bdb7ad55986f9c73104473e4bd1947fCAS | 9804547PubMed |

[22]  Y. Zhu, J. Shi, H. Chen, W. Shen, X. Dong, Microporous Mesoporous Mater. 2005, 84, 218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsF2nsbs%3D&md5=55bb541ee79545ea43e7e1be6f977f70CAS |

[23]  B. Peng, M. Chen, S. Zhou, L. Wu, X. Ma, J. Colloid Interface Sci. 2008, 321, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvFOhtLc%3D&md5=c908cf5502dcb09669c47e3d34034eb8CAS | 18261739PubMed |

[24]  C. Yu, B. Tian, J. Fan, G. D. Stucky, D. Zhao, Chem. Lett. 2002, 1, 62.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  K. Han, Z. Zhao, Z. Xiang, C. Wang, J. Zhang, B. Yang, Mater. Lett. 2007, 61, 363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Ontr3J&md5=da871f73c730d8713c8134333d3e8f1cCAS |

[27]  E. A. Alarcón, A. L. Villa, C. M. Correa, Microporous Mesoporous Mater. 2009, 122, 208.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  M. Najafi, Y. Yousefi, A. Rafati, Sep. Purif. Technol. 2012, 85, 193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVarug%3D%3D&md5=604a5107e865bb78fd347638f38cdd4cCAS |

[29]  K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemienewska, Pure Appl. Chem. 1985, 57, 603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvFWrtb4%3D&md5=f488205ead49f1534a1ef1e418aad4c9CAS |

[30]  P. L. Llewellyn, Y. Grillet, F. Schüth, H. Reichert, K. K. Unger, Microporous Mater. 1994, 3, 345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisVGnsb0%3D&md5=36937bf9f323048a48fbe1c9eda764bdCAS |

[31]  S. L. Lee, S. C. Wei, H. Nur, H. Hamdan, Int. J. Chem React 2010, 8, 63.

[32]  A. K. Zak, M. E. Abrishami, W. H. Majid, R. Abd Yousefi, S. M. Hosseini, Ceram. Int. 2011, 37, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmtbvJ&md5=d4ec56eaa07fc43a7acae7c806e38badCAS |

[33]  A. K. Zak, R. Razali, W. H. Abd Majid, M. Darroudi, Int. J. Nanomed. 2011, 6, 1399.

[34]  X. Gao, S. R. Bare, B. M. Weckhuysen, I. E. Wachs, J. Phys. Chem. B 1998, 102, 10842.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsleiu7g%3D&md5=2bd6bf40c67063425e87198109008da5CAS |

[35]  F. Alvi, M. K. Ram, H. Gomez, R. K. Joshi, A. Kumar, Polym. J. 2010, 42, 935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFajsr3I&md5=bc42930425f4a212ec869bc8f1f38097CAS |

[36]  H. Hidaka, J. Zhao, Colloids Surf. 1992, 67, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXislWiuw%3D%3D&md5=6136a6637316d256855c085e9f7f9958CAS |

[37]  X. Li, K. Lv, K. Deng, J. Tang, R. Su, J. Sun, L. Chen, Mater. Sci. Eng., B 2009, 158, 40.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtF2ksr0%3D&md5=641cab03d3e85e555d26958de4bad944CAS |

[38]  G. D. Mihai, V. Meynen, M. Mertens, N. Bilba, P. Cool, E. F. Vansant, J. Mater. Sci. 2010, 45, 5786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVGht7c%3D&md5=021abfa9962facf9b7182b781a3efd71CAS |

[39]  P. K. Sanoop, S. Anas, S. Ananthakumar, V. Gunasekar, R. Saravanan, V. Ponnusami, Arabian J. Chem. 2012, in press.

[40]  P. S. Keng, S. L. Lee, S. T. Ha, Y. T. Hung, S. T. Ong, Green Materials for Energy, Products and Depollution 2013 (Springer: Dordrecht).